PHẦN II. TỰ LUẬN
Cho biểu thức \[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right).\]
a) Viết điều kiện xác định của biểu thức \(A.\)
b) Rút gọn biểu thức \(A.\)
c) Tính giá trị của biểu thức \(A\) biết \(\left| {x + 3} \right| = 1.\)
Cho biểu thức \[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right).\]
a) Viết điều kiện xác định của biểu thức \(A.\)
b) Rút gọn biểu thức \(A.\)
c) Tính giá trị của biểu thức \(A\) biết \(\left| {x + 3} \right| = 1.\)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Ta có \({x^2} - 4 = \left( {x - 2} \right)\left( {x + 2} \right).\)
\({x^2} + x + 1 = {x^2} + 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\) với mọi \(x.\)
Khi đó, điều kiện xác định của biểu thức \(A\) là \({x^2} - 4 \ne 0,\) \(x - 1 \ne 0\) hay \(x - 2 \ne 0,\) \(x + 2 \ne 0\) và \(x - 1 \ne 0\), tức là \(x \ne 2,\,\,x \ne - 2\) và \(x \ne 1.\)
Vậy điều kiện xác định của biểu thức \(A\) là \(x \ne 2,\,\,x \ne - 2\) và \(x \ne 1.\)
b) Với \(x \ne 2,\,\,x \ne - 2\) và \(x \ne 1,\) ta có:
\[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right)\]
\( = \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{1}{{x - 1}} - \frac{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{{x^2} - 4}} \cdot \frac{{x + 1}}{{{x^2} + x + 1}}\)
\( = \frac{{{x^2} + x + 1}}{{{x^2} - 4}} - \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{{x^2} - 4}}\)
\( = \frac{{{x^2} + x + 1 - \left( {{x^2} - 1} \right)}}{{{x^2} - 4}}\)\( = \frac{{{x^2} + x + 1 - {x^2} + 1}}{{{x^2} - 4}}\)
\[ = \frac{{x + 2}}{{{x^2} - 4}} = \frac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \frac{1}{{x - 2}}.\]
Vậy với \(x \ne 2,\,\,x \ne - 2\) và \(x \ne 1,\) thì \(A = \frac{1}{{x - 2}}.\)
c) Ta có \(\left| {x + 3} \right| = 1\) suy ra \(x + 3 = 1\) hoặc \(x + 3 = - 1\)
Do đó \(x = - 2\) (không thỏa mãn điều kiện) hoặc \(x = - 4\) (thỏa mãn điều kiện).
Thay \(x = - 4\) vào biểu thức \(A = \frac{1}{{x - 2}},\) ta được: \(A = \frac{1}{{ - 4 - 2}} = - \frac{1}{6}.\)
Vậy \(A = - \frac{1}{6}\) khi \(\left| {x + 3} \right| = 1.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Điều kiện \(a,\,\,b,\,\,c \ne 0.\)
Với \[a + b + c = 0,\] ta có \(a + b = - c;\,\,b + c = - a;\,\,c + a = - b.\)
Ta có \(C = \left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right)\left( {\frac{c}{{a - b}} + \frac{a}{{b - c}} + \frac{b}{{c - a}}} \right)\)
\( = \underbrace {\left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{c}{{a - b}}}_M + \underbrace {\left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{a}{{b - c}}}_N + \underbrace {\left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{b}{{c - a}}}_P\)
Xét \(M = \left( {\frac{{a - b}}{c} + \frac{{b - c}}{a} + \frac{{c - a}}{b}} \right) \cdot \frac{c}{{a - b}}\)
\( = 1 + \frac{c}{{a - b}} \cdot \left( {\frac{{b - c}}{a} + \frac{{c - a}}{b}} \right)\)\( = 1 + \frac{c}{{a - b}} \cdot \frac{{{b^2} - bc + ac - {a^2}}}{{ab}}\)
\( = 1 + \frac{c}{{a - b}} \cdot \frac{{\left( {b - a} \right)\left( {b + a} \right) - c\left( {b - a} \right)}}{{ab}}\)\( = 1 + \frac{c}{{a - b}} \cdot \frac{{\left( {b - a} \right)\left( {b + a - c} \right)}}{{ab}}\)
\[ = 1 + \frac{c}{{a - b}} \cdot \frac{{ - \left( {a - b} \right)\left( { - c - c} \right)}}{{ab}}\]\[ = 1 + \frac{{c \cdot 2c}}{{ab}} = 1 + \frac{{2{c^3}}}{{abc}}.\]
Tương tự, \(N = 1 + \frac{{2{a^3}}}{{abc}};\,\,P = 1 + \frac{{2{b^3}}}{{abc}}.\)
Khi đó \(C = M + N + P = 1 + \frac{{2{c^3}}}{{abc}} + 1 + \frac{{2{a^3}}}{{abc}} + 1 + \frac{{2{b^3}}}{{abc}} = 3 + \frac{{2\left( {{a^3} + {b^3} + {c^3}} \right)}}{{abc}}.\)
Mặt khác, do \[a + b + c = 0\] nên ta có \[{\left( {a + b + c} \right)^3} = 0\]
Suy ra \[{\left( {a + b} \right)^3} + {c^3} + 3\left( {a + b} \right)c\left( {a + b + c} \right) = 0\]
\[{a^3} + {b^3} + 3ab\left( {a + b} \right) + {c^3} + 3\left( {a + b} \right)c\left( {a + b + c} \right) = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {ab + ac + bc + {c^2}} \right) = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left[ {a\left( {b + c} \right) + c\left( {b + c} \right)} \right] = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( {a + b} \right)\left( {b + c} \right)\left( {a + c} \right) = 0\]
\[{a^3} + {b^3} + {c^3} + 3\left( { - c} \right)\left( { - a} \right)\left( { - b} \right) = 0\]
\[{a^3} + {b^3} + {c^3} - 3abc = 0\]
\[{a^3} + {b^3} + {c^3} = 3abc.\]
Vậy \(C = 3 + \frac{{2 \cdot \left( {3abc} \right)}}{{abc}} = 3 + 6 = 9.\)
Lời giải
Hướng dẫn giải
1)
Gọi \(F\) là giao điểm của \(AB\) và \(ED.\)
Quan sát đường đi của bạn An theo hình vẽ thì đó là tứ giác \(BCDF,\) tứ giác này có \(\widehat {B\,} = \widehat {C\,} = \widehat {D\,} = 90^\circ \) nên là hình chữ nhật.
Mà \(CD = CB = 300\) m nên hình chữ nhật \(BCDF\) là hình vuông.
Do đó \(BC = CD = DF = FB = 300\) (m) và \(\widehat {BFD} = 90^\circ .\)
Ta có \(AF = AB + BF = 900 + 300 = 1\,\,200\) (m); \(EF = FD + DE = 300 + 200 = 500\) (m).
Áp dụng định lí Pythagore cho \(\Delta AEF\) vuông tại \(F\) ta có:
\(A{E^2} = A{F^2} + E{F^2}\)\( = 1\,\,{200^2} + {500^2} = 1{\rm{ }}690{\rm{ }}000.\)
Suy ra \(AE = \sqrt {1{\rm{ }}690{\rm{ }}000} = 1\,\,300\) (m) \( = 1,3\) (km).
Thời gian đi hết quãng đường \(AE\) là: \(\frac{{1,3}}{{13}} = 0,1\) (giờ) \( = 6\) (phút).
Vậy bạn An đi từ nhà đến trường (bằng xe đạp điện) là lúc \(7\) giờ \(6\) phút.
a) Xét \(\Delta ABE\) và \(\Delta ADC\) có:
\(\widehat {BAE}\) là góc chung;
\[\frac{{AB}}{{AD}} = \frac{{AE}}{{AC}}\,\,\left( {\frac{8}{{10}} = \frac{{12}}{{15}} = \frac{4}{5}} \right).\]
Do đó (c.g.c).
b) Vì (câu a) nên \(\frac{{AB}}{{AD}} = \frac{{BE}}{{DC}}\)
Suy ra \(AB \cdot DC = AD \cdot BE.\)
Do đó \(DC = \frac{{AD \cdot BE}}{{AB}} = \frac{{10 \cdot 10}}{8} = 12,5{\rm{\;cm}}.\)c) Vì (câu a) nên (hai góc tương ứng).
Xét \(\Delta CBI\) và \(\Delta EDI\) có:
\(\widehat {BCI} = \widehat {DEI}\) (do \(\widehat {AEB} = \widehat {ACD})\) và \(\widehat {BIC} = \widehat {DIE}\) (hai góc đối đỉnh)
Do đó (g.g).
Suy ra \(\frac{{IC}}{{IE}} = \frac{{IB}}{{ID}}\) (tỉ số cạnh tương ứng) nên \[IB \cdot IE = ID \cdot IC.\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.