Câu hỏi:

20/01/2026 31 Lưu

Trong không gian \[Oxyz,\] cho đường thẳng \(d:\frac{{x - 1}}{3} = \frac{{y + 1}}{1} = \frac{z}{1}\) và mặt phẳng \(\left( P \right):2x + y - 2z + 2 = 0.\) Phương trình mặt cầu \(\left( S \right)\) có tâm nằm trên đường thẳng \(d\) có bán kính nhỏ nhất tiếp xúc với \(\left( P \right)\) và đi qua điểm \(A\left( {1\,;\,\, - 1\,;\,\,1} \right)\) là:

  A. \({\left( {x + 2} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 1} \right)^2} = 1.\)                                  
B. \({\left( {x - 4} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 1.\)         
C. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1.\)
D. \({\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(I\) là tâm của \(\left( S \right)\). Vì \[I \in d\] nên \[I\left( {1 + 3t\,;\,\, - 1 + t\,;\,\,t} \right).\] Bán kính \(R = IA = \sqrt {11{t^2} - 2t + 1} .\)

Mặt phẳng \(\left( P \right)\) tiếp xúc với \(\left( S \right)\) nên \(d\left( {I,\,\,\left( P \right)} \right) = \frac{{\left| {5t + 3} \right|}}{3} = R.\)

Suy ra \(\sqrt {11{t^2} - 2t + 1} = \frac{{\left| {5t + 3} \right|}}{3}\) \( \Leftrightarrow 37{t^2} - 24t = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 0 \Rightarrow R = 1}\\{t = \frac{{24}}{{37}} \Rightarrow R = \frac{{77}}{{37}}}\end{array}} \right.\).

\(\left( S \right)\) có bán kính nhỏ nhất nên chọn \(t = 0\,,\,\,R = 1.\) Suy ra \[I\left( {1\,;\,\, - 1\,;\,\,0} \right).\]

Vậy phương trình mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 1.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 1,33

Phương trình tham số của hai đường thẳng \({d_1},\,\,{d_2}\) như sau:

\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = 3t}\\{z = 1 + 3t}\end{array},\,\,{d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t'}\\{y = t'}\\{z = 1 + t'}\end{array}} \right.} \right.\).

Xét hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{ - 1 + 2t = 1 - 2t'}\\{3t = t'}\\{1 + 3t = 1 + t'}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2t + 2t' = 2}\\{3t - t' = 0}\\{3t - t' = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = \frac{1}{4}}\\{t' = \frac{3}{4}}\end{array}} \right.} \right.} \right.\).

Suy ra giao điểm của \({d_1},\,\,{d_2}\)\(A\left( { - \frac{1}{2}\,;\,\,\frac{3}{4}\,;\,\,\frac{7}{4}} \right).\)

Khoảng cách từ \(A\) đến mặt phẳng \((P)\)\(d\left( {A\,,\,\,\left( P \right)} \right) = \frac{{\left| {2 \cdot \left( { - \frac{1}{2}} \right) + 4 \cdot \left( {\frac{3}{4}} \right) - 4 \cdot \left( {\frac{7}{4}} \right) - 3} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 4} \right)}^2}} }} = \frac{4}{3} \approx 1,33.\)

Đáp án cần nhập là: \(1,33\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

  A. Biểu cảm.             
B. Tự sự.                      
C. Miêu tả.       
  D. Nghị luận.  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. sometime.           
B. sometimes.           
C. some time.         
D. some times.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP