Câu hỏi:

20/01/2026 35 Lưu

 Cho hàm số loading...với  là tham số. Tổng tất cả các giá trị của tham số để loading...bằng (nhập đáp án vào ô trống).

Đáp án  ___

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. -9

Xét hàm số \(f\left( x \right) = {x^4} - 4{x^3} + 4{x^2} + m\) trên \(\left[ {1\,;\,\,3} \right] \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\mathop {\min }\limits_{\left[ {1\,;\,\,3} \right]} f(x) = m}\\{\mathop {\max }\limits_{_{\left[ {1\,;\,\,3} \right]}} f(x) = m + 9}\end{array}} \right..\)

TH1: Với \(m > 0\) suy ra \(\left\{ {\begin{array}{*{20}{l}}{{y_{\min }} = m}\\{{y_{\max }} = m + 9}\end{array}} \right.\).

Do đó \(2{y_{\min }} + {y_{\max }} = 2m + m + 9 = 12 \Leftrightarrow m = 1\) (thoả mãn).

• TH2: Với \(m + 9 < 0 \Leftrightarrow m < - 9\) suy ra \(\left\{ {\begin{array}{*{20}{l}}{{y_{\min }} = \left| {m + 9} \right|}\\{{y_{\max }} = \left| m \right|}\end{array}} \right.\).

Do đó \(2{y_{\min }} + {y_{\max }} = 2\left| {m + 9} \right| + \left| m \right| = 12 \Leftrightarrow 2\left( { - m - 9} \right) - m = 12 \Leftrightarrow m = - 10\) (thoả mãn).

• TH3: Với \( - 9 < m < 0\) suy ra \[\left\{ {\begin{array}{*{20}{l}}{{y_{\min }} = 0}\\{{y_{\max }} = \left\{ {\left| m \right|;\,\,\left| {m + 9} \right|} \right\}}\end{array}} \right.\].

Do đó \(2{y_{\min }} + {y_{\max }} = 12 \Leftrightarrow {y_{\max }} = 12 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\left| m \right| = 12}\\{\left| {m + 9} \right| = 12}\end{array}} \right.\) (không thoả mãn).

Nên \(m \in \left\{ { - 10\,;\,\,1} \right\}\). Do đó, tổng các giá trị của \[m\] là \( - 10 + 1 = - 9\).

Đáp án cần nhập là: −9.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 1,33

Phương trình tham số của hai đường thẳng \({d_1},\,\,{d_2}\) như sau:

\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = 3t}\\{z = 1 + 3t}\end{array},\,\,{d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t'}\\{y = t'}\\{z = 1 + t'}\end{array}} \right.} \right.\).

Xét hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{ - 1 + 2t = 1 - 2t'}\\{3t = t'}\\{1 + 3t = 1 + t'}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2t + 2t' = 2}\\{3t - t' = 0}\\{3t - t' = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = \frac{1}{4}}\\{t' = \frac{3}{4}}\end{array}} \right.} \right.} \right.\).

Suy ra giao điểm của \({d_1},\,\,{d_2}\)\(A\left( { - \frac{1}{2}\,;\,\,\frac{3}{4}\,;\,\,\frac{7}{4}} \right).\)

Khoảng cách từ \(A\) đến mặt phẳng \((P)\)\(d\left( {A\,,\,\,\left( P \right)} \right) = \frac{{\left| {2 \cdot \left( { - \frac{1}{2}} \right) + 4 \cdot \left( {\frac{3}{4}} \right) - 4 \cdot \left( {\frac{7}{4}} \right) - 3} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 4} \right)}^2}} }} = \frac{4}{3} \approx 1,33.\)

Đáp án cần nhập là: \(1,33\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

  A. Biểu cảm.             
B. Tự sự.                      
C. Miêu tả.       
  D. Nghị luận.  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. sometime.           
B. sometimes.           
C. some time.         
D. some times.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP