Câu hỏi:

20/01/2026 45 Lưu

Trong không gian \[Oxyz,\] cho hai điểm \(A\left( { - 2\,;\,\,3\,;\,\,1} \right)\)\(B\left( {5\,;\,\,6\,;\,\,2} \right).\) Đường thẳng \[AB\] cắt mặt phẳng \(\left( {Oxz} \right)\) tại điểm \[M.\] Tính tỉ số \(\frac{{AM}}{{BM}}.\)

 

A. \(\frac{{AM}}{{BM}} = \frac{1}{2}.\)    
B. \(\frac{{AM}}{{BM}} = 2.\) 
C. \(\frac{{AM}}{{BM}} = \frac{1}{3}.\)     
D. \(\frac{{AM}}{{BM}} = 3.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(M \in \left( {Oxz} \right) \Rightarrow M\left( {x\,;\,\,0\,;\,\,z} \right)\,;\,\,\overrightarrow {AB} = \left( {7\,;\,\,3\,;\,\,1} \right) \Rightarrow AB = \sqrt {59} \,;\,\,\overrightarrow {AM} = \left( {x + 2\,;\,\, - 3\,;\,\,z - 1} \right)\)\[A,\,\,B,\,\,M\] thẳng hàng \( \Rightarrow \overrightarrow {AM} = k \cdot \overrightarrow {AB} (k \in \mathbb{R}) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + 2 = 7k}\\{ - 3 = 3k}\\{z - 1 = k}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = - 9}\\{ - 1 = k}\\{z = 0}\end{array}} \right.} \right. \Rightarrow M\left( { - 9\,;\,\,0\,;\,\,0} \right)\).

\(\overrightarrow {BM} = \left( { - 14\,;\,\, - 6\,;\,\, - 2} \right)\,;\,\,\overrightarrow {AM} = \left( { - 7\,;\,\, - 3\,;\,\, - 1} \right) \Rightarrow BM = 2AM.\) Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 1,33

Phương trình tham số của hai đường thẳng \({d_1},\,\,{d_2}\) như sau:

\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = 3t}\\{z = 1 + 3t}\end{array},\,\,{d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t'}\\{y = t'}\\{z = 1 + t'}\end{array}} \right.} \right.\).

Xét hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{ - 1 + 2t = 1 - 2t'}\\{3t = t'}\\{1 + 3t = 1 + t'}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2t + 2t' = 2}\\{3t - t' = 0}\\{3t - t' = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = \frac{1}{4}}\\{t' = \frac{3}{4}}\end{array}} \right.} \right.} \right.\).

Suy ra giao điểm của \({d_1},\,\,{d_2}\)\(A\left( { - \frac{1}{2}\,;\,\,\frac{3}{4}\,;\,\,\frac{7}{4}} \right).\)

Khoảng cách từ \(A\) đến mặt phẳng \((P)\)\(d\left( {A\,,\,\,\left( P \right)} \right) = \frac{{\left| {2 \cdot \left( { - \frac{1}{2}} \right) + 4 \cdot \left( {\frac{3}{4}} \right) - 4 \cdot \left( {\frac{7}{4}} \right) - 3} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 4} \right)}^2}} }} = \frac{4}{3} \approx 1,33.\)

Đáp án cần nhập là: \(1,33\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

  A. Biểu cảm.             
B. Tự sự.                      
C. Miêu tả.       
  D. Nghị luận.  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. sometime.           
B. sometimes.           
C. some time.         
D. some times.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP