Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{x}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 1}}\) và hai điểm \(A\left( {1\,;\,\,0\,;\,\,1} \right)\,,\,\,B\left( { - 1\,;\,\,1\,;\,\,2} \right).\) Biết điểm \(M\left( {a\,;\,\,b\,;\,\,c} \right)\) thuộc đường thẳng \(\Delta \) sao cho \(\left| {\overrightarrow {MA} - 3\overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất. Giá trị của \(a + 2b + 4c\) bằng
Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{x}{2} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 1}}\) và hai điểm \(A\left( {1\,;\,\,0\,;\,\,1} \right)\,,\,\,B\left( { - 1\,;\,\,1\,;\,\,2} \right).\) Biết điểm \(M\left( {a\,;\,\,b\,;\,\,c} \right)\) thuộc đường thẳng \(\Delta \) sao cho \(\left| {\overrightarrow {MA} - 3\overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất. Giá trị của \(a + 2b + 4c\) bằng
Quảng cáo
Trả lời:
Do \(M \in \Delta \) nên \(M\left( {2t\,;\,\, - 1 + t\,;\,\,1 - t} \right)\).
\(\overrightarrow {MA} = \left( {1 - 2t\,;\,\,1 - t\,;\,\,t} \right)\); \(\overrightarrow {MB} = \left( { - 1 - 2t\,;\,\,2 - t\,;\,\,1 + t} \right)\); \(3\overrightarrow {MB} = \left( { - 3 - 6t\,;\,\,6 - 3t\,;\,\,3 + 3t} \right)\);
\(\overrightarrow {MA} - 3\overrightarrow {MB} = \left( {4 + 4t\,;\,\, - 5 + 2t\,;\,\, - 3 - 2t} \right)\);
\(\left| {\overrightarrow {MA} - 3\overrightarrow {MB} } \right| = \sqrt {24{t^2} + 24t + 50} = \sqrt {24{{\left( {t + \frac{1}{2}} \right)}^2} + 44} \ge \sqrt {44} \).
Khi đó \(\left| {\overrightarrow {MA} - 3\overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất bằng \(\sqrt {44} \) khi \(t = \frac{{ - 1}}{2}\).
Do đó điểm \(M\) có tọa độ là \(M\left( { - 1; - \frac{3}{2};\frac{3}{2}} \right)\) và \(a + 2b + 4c = - 1 - 3 + 6 = 2.\) Chọn D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nếu gửi ở ngân hàng có lãi suất \(6\% /\)năm thì sau 2 năm số tiền cả vốn lẫn lãi thu được là: \(50{\left( {1 + \frac{6}{{100}}} \right)^2} = 56,18\) (triệu đồng).
Đáp án cần nhập là: 56,18.
Lời giải
Phương trình tham số của hai đường thẳng \({d_1},\,\,{d_2}\) như sau:
\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = 3t}\\{z = 1 + 3t}\end{array},\,\,{d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t'}\\{y = t'}\\{z = 1 + t'}\end{array}} \right.} \right.\).
Xét hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{ - 1 + 2t = 1 - 2t'}\\{3t = t'}\\{1 + 3t = 1 + t'}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2t + 2t' = 2}\\{3t - t' = 0}\\{3t - t' = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = \frac{1}{4}}\\{t' = \frac{3}{4}}\end{array}} \right.} \right.} \right.\).
Suy ra giao điểm của \({d_1},\,\,{d_2}\) là \(A\left( { - \frac{1}{2}\,;\,\,\frac{3}{4}\,;\,\,\frac{7}{4}} \right).\)
Khoảng cách từ \(A\) đến mặt phẳng \((P)\) là \(d\left( {A\,,\,\,\left( P \right)} \right) = \frac{{\left| {2 \cdot \left( { - \frac{1}{2}} \right) + 4 \cdot \left( {\frac{3}{4}} \right) - 4 \cdot \left( {\frac{7}{4}} \right) - 3} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 4} \right)}^2}} }} = \frac{4}{3} \approx 1,33.\)
Đáp án cần nhập là: \(1,33\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
