Câu hỏi:

20/01/2026 37 Lưu

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình vuông cạnh \(a,\) cạnh bên \[SA\] vuông góc với mặt phẳng đáy, \(SA = a\sqrt 2 .\) Gọi \[M,\,\,N\] lần lượt là hình chiếu vuông góc của điểm \(A\) trên các cạnh \[SB,\,\,SD.\] Góc giữa mặt phẳng \[\left( {AMN} \right)\] và đường thẳng \[SB\] bằng:

   

A. \(45^\circ .\)            
B. \(90^\circ .\)       
C. \(120^\circ .\)     
D. \(60^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(BC \bot \left( {SAB} \right) \Rightarrow BC \bot AM\)

\( \Rightarrow AM \bot \left( {SBC} \right) \Rightarrow AM \bot SC.\)

Tương tự ta cũng có \(AN \bot SC \Rightarrow \left( {AMN} \right) \bot SC.\)

Gọi \(\varphi \) là góc giữa đường thẳng SB và \(\left( {AMN} \right)\)

Chuẩn hóa và chọn hệ trục tọa độ sao cho: \(D\left( {1\,;\,\,0\,;\,\,0} \right)\),

\(S\left( {0\,;\,\,0\,;\,\,\sqrt 2 } \right),\,\,C\left( {1\,;\,\,1\,;\,\,0} \right),\)\(A\left( {0\,;\,\,0\,;\,\,0} \right),\,\,\)\(B\left( {0\,;\,\,1\,;\,\,0} \right),\,\,\)\(\overrightarrow {SC} = \left( {1\,;\,\,1\,;\,\, - \sqrt 2 } \right),\,\,\overrightarrow {SB} = \left( {0\,;\,\,1\,;\,\, - \sqrt 2 } \right).\)

Do \(\left( {AMN} \right) \bot SC\) nên \(\left( {AMN} \right)\)vectơ pháp tuyến \(\overrightarrow {SC} .\)

Do đó \(\sin \varphi = \frac{{\left| 3 \right|}}{{2\sqrt 3 }} = \frac{{\sqrt 3 }}{2} \Rightarrow \varphi = 60^\circ {\rm{. }}\)Chọn D.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 1,33

Phương trình tham số của hai đường thẳng \({d_1},\,\,{d_2}\) như sau:

\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = 3t}\\{z = 1 + 3t}\end{array},\,\,{d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t'}\\{y = t'}\\{z = 1 + t'}\end{array}} \right.} \right.\).

Xét hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{ - 1 + 2t = 1 - 2t'}\\{3t = t'}\\{1 + 3t = 1 + t'}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2t + 2t' = 2}\\{3t - t' = 0}\\{3t - t' = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = \frac{1}{4}}\\{t' = \frac{3}{4}}\end{array}} \right.} \right.} \right.\).

Suy ra giao điểm của \({d_1},\,\,{d_2}\)\(A\left( { - \frac{1}{2}\,;\,\,\frac{3}{4}\,;\,\,\frac{7}{4}} \right).\)

Khoảng cách từ \(A\) đến mặt phẳng \((P)\)\(d\left( {A\,,\,\,\left( P \right)} \right) = \frac{{\left| {2 \cdot \left( { - \frac{1}{2}} \right) + 4 \cdot \left( {\frac{3}{4}} \right) - 4 \cdot \left( {\frac{7}{4}} \right) - 3} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 4} \right)}^2}} }} = \frac{4}{3} \approx 1,33.\)

Đáp án cần nhập là: \(1,33\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

  A. Biểu cảm.             
B. Tự sự.                      
C. Miêu tả.       
  D. Nghị luận.  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. sometime.           
B. sometimes.           
C. some time.         
D. some times.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP