Câu hỏi:

20/01/2026 46 Lưu

 Cho hình chóp  có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy ( và có diện tích bằng 2734. Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp thành hai phần. Thể tích của phần chứa điểm  bằng (nhập đáp án vào ô trống):

Đáp án  ___

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1. 12

Gọi \(H\) là trung điểm \(AB\). Do \(\Delta SAB\) đều và \(\left( {SAB} \right) \bot \left( {ABCD} \right)\) nên \(SH \bot \left( {ABCD} \right).\)

Ta có \({S_{SAB}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{27\sqrt 3 }}{4} \Rightarrow AB = 3\sqrt 3 \)

\( \Rightarrow SH = \frac{{AB\sqrt 3 }}{2} = \frac{{3\sqrt 3 \sqrt 3 }}{2} = \frac{9}{2}\).

\( \Rightarrow {V_{S.ABCD}} = \frac{1}{3} \cdot {S_{ABCD}} \cdot SH = \frac{1}{3} \cdot A{B^2} \cdot SH = \frac{1}{3} \cdot {\left( {3\sqrt 3 } \right)^2} \cdot \frac{9}{2} = \frac{{81}}{2}\) (đvtt).

Gọi \(G\) là trọng tâm tam giác \[SAB,\] qua \(G\) kẻ đường thẳng song song với \[AB,\] cắt \[SA\]\[SB\] lần lượt tại \[M,{\rm{ }}N.\]

Qua \(N\) kẻ đường thẳng song song với \[BC\] cắt \[SC\] tại \(P\), qua \(M\) kẻ đường thẳng song song với \[AD\] cắt \[SD\] tại \[Q.\]

Suy ra \(\left( {MNPQ} \right)\) là mặt phẳng đi qua \(G\) và song song với \(\left( {ABCD} \right)\).

Khi đó \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{{SQ}}{{SD}} = \frac{{SG}}{{SH}} = \frac{2}{3}.\)

Ta có \(\frac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}} \cdot \frac{{SN}}{{SB}} \cdot \frac{{SP}}{{SC}} = {\left( {\frac{2}{3}} \right)^2} = \frac{8}{{27}}\)\( \Rightarrow {V_{S.MNP}} = \frac{8}{{27}} \cdot {V_{S.ABC}} = \frac{8}{{27}} \cdot \frac{1}{2}{V_{S.ABCD}} = \frac{4}{{27}}{V_{S.ABCD}}\)

\(\frac{{{V_{S.MPQ}}}}{{{V_{S.ACD}}}} = \frac{{SM}}{{SA}} \cdot \frac{{SP}}{{SC}} \cdot \frac{{SQ}}{{SD}} = {\left( {\frac{2}{3}} \right)^2} = \frac{8}{{27}} \Rightarrow {V_{S.MPQ}} = \frac{8}{{27}} \cdot {V_{S.ACD}} = \frac{8}{{27}} \cdot \frac{1}{2}{V_{S.ABCD}} = \frac{4}{{27}}{V_{S.ABCD}}\)

Vậy \({V_{S.MNPQ}} = {V_{S.MNP}} + {V_{S.MPQ}} = \frac{4}{{27}}{V_{S.ABCD}} + \frac{4}{{27}}{V_{S.ABCD}} = \frac{8}{{27}}{V_{S.ABCD}} = \frac{8}{{27}} \cdot \frac{{81}}{2} = 12\) (đvtt).

Đáp án cần nhập là: \(12\).


 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(1) 1,33

Phương trình tham số của hai đường thẳng \({d_1},\,\,{d_2}\) như sau:

\({d_1}:\left\{ {\begin{array}{*{20}{l}}{x = - 1 + 2t}\\{y = 3t}\\{z = 1 + 3t}\end{array},\,\,{d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 1 - 2t'}\\{y = t'}\\{z = 1 + t'}\end{array}} \right.} \right.\).

Xét hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{ - 1 + 2t = 1 - 2t'}\\{3t = t'}\\{1 + 3t = 1 + t'}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2t + 2t' = 2}\\{3t - t' = 0}\\{3t - t' = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = \frac{1}{4}}\\{t' = \frac{3}{4}}\end{array}} \right.} \right.} \right.\).

Suy ra giao điểm của \({d_1},\,\,{d_2}\)\(A\left( { - \frac{1}{2}\,;\,\,\frac{3}{4}\,;\,\,\frac{7}{4}} \right).\)

Khoảng cách từ \(A\) đến mặt phẳng \((P)\)\(d\left( {A\,,\,\,\left( P \right)} \right) = \frac{{\left| {2 \cdot \left( { - \frac{1}{2}} \right) + 4 \cdot \left( {\frac{3}{4}} \right) - 4 \cdot \left( {\frac{7}{4}} \right) - 3} \right|}}{{\sqrt {{2^2} + {4^2} + {{\left( { - 4} \right)}^2}} }} = \frac{4}{3} \approx 1,33.\)

Đáp án cần nhập là: \(1,33\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

  A. Biểu cảm.             
B. Tự sự.                      
C. Miêu tả.       
  D. Nghị luận.  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. sometime.           
B. sometimes.           
C. some time.         
D. some times.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP