Trong mặt phẳng tọa độ \(Oxy,\) cho đường thẳng \(y = ax + b.\)
Khẳng định nào sau đây là đúng?
Trong mặt phẳng tọa độ \(Oxy,\) cho đường thẳng \(y = ax + b.\)
Khẳng định nào sau đây là đúng?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Xét đường thẳng \(y = ax + b.\)
⦁ Khi \(a < 0\) thì góc tạo bởi đường thẳng \(y = ax + b\) và trục \[Ox\] là góc tù.
⦁ Khi \(a = 0\) thì ta có hàm số \(y = b,\) đường thẳng này song song với trục \(Ox.\)
⦁ Thay \(x = 0\) vào hàm số \(y = ax + b,\) ta được \(y = a \cdot 0 + b = b.\) Do đó đường thẳng \(y = ax + b\) đi qua điểm \(\left( {0;b} \right).\)
⦁ Với \(a \ne 0,\) khi \(a\) càng lớn thì góc tạo bởi đường thẳng \(y = ax + b\) và trục \[Ox\] càng lớn.
Vậy ta chọn phương án C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1)

a) Xét \(\Delta ABD\) có \(DM\) là đường phân giác của \[\widehat {ADB}\] nên \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (tính chất đường phân giác trong tam giác).
b) Xét \(\Delta ACD\) có \(DN\) là đường phân giác của \[\widehat {ADC}\] nên \[\frac{{DA}}{{DC}} = \frac{{NA}}{{NC}}\] (tính chất đường phân giác trong tam giác).Mà \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (câu a) và \[DB = DC\] nên \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}.\]
Xét \(\Delta ABC\) có: \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}\] (câu b) nên \[MN\,{\rm{//}}\,BC\](định lí Thalès đảo).
Tam giác \(AEK\) có \(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)2)

a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị).
Vì \(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {CEM}\) (đồng vị).
Mà \(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\)
Do đó \(\widehat {BKM} = \widehat {CEM},\) lại có \(\widehat {CEM} = \widehat {AEK}\) nên \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\)b) Xét \(\Delta ACD\) có \(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)
Mà \(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)
Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)
Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)
Xét \(\Delta BMK\) có \(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)
Mà \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Theo tính chất tỉ lệ thức ta có từ \(\frac{{AM}}{{MB}} = \frac{3}{8},\) suy ra \(\frac{{AM}}{{AM + MB}} = \frac{3}{{3 + 8}}\) hay \[\frac{{AM}}{{AB}} = \frac{3}{{11}}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.