Câu hỏi:

22/01/2026 8 Lưu

Cho tam giác \(ABC,\) đường trung tuyến \(AM.\) Gọi \(D\) là trung điểm của \(AM,\,\,E\) là giao điểm của \(BD\) và \(AC,\) \(F\) là trung điểm của \(EC.\) Biết \(AC = 9{\rm{\;cm}},\) độ dài đoạn \(AE\) là

A. \(4,5{\rm{\;cm}}.\)    
B. \(3{\rm{\;cm}}.\)         
C. \(2{\rm{\;cm}}.\)         
D. \(6{\rm{\;cm}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Cho tam giác ABC, đường trung tuyến AM. Gọi D là trung điểm của AM,E là giao điểm của BD và AC, F là trung điểm của EC. Biết AC = 9cm, độ dài đoạn AE là (ảnh 1)

Xét \[\Delta BCE\] có \(M,\,\,F\) lần lượt là trung điểm của \(BC,\,\,EC\) nên \(MF\) là đường trung bình của tam giác, do đó \(MF\,{\rm{//}}\,BE,\) hay \(MF\,{\rm{//}}\,DE.\)

Xét \(\Delta AMF\) có \(D\) là trung điểm của \(AM\) và \(DE\,{\rm{//}}\,MF\) nên \(DE\) là đường trung bình của tam giác, do đó \(E\) là trung điểm của \(AF.\) Suy ra \(AE = EF.\)

Mà \(F\) là trung điểm của \(EC\) nên \(EF = FC,\) do đó \(AE = EF = FC\) hay \(AE = \frac{1}{3}AC = \frac{1}{3} \cdot 9 = 3{\rm{\;cm}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

1)

1) Cho  tam giác ABC trung tuyến AD. Vẽ tia phân giác của góc ADB cắt AB tại M, tia phân giác của góc ADC cắt AC tại N. Chứng minh rằng:  a) MB/MA = BD/AD b) MN song song BC (ảnh 1)

a) Xét \(\Delta ABD\) có \(DM\) là đường phân giác của \[\widehat {ADB}\] nên \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\]  (tính chất đường phân giác trong tam giác).

b) Xét \(\Delta ACD\) có \(DN\) là đường phân giác của \[\widehat {ADC}\] nên \[\frac{{DA}}{{DC}} = \frac{{NA}}{{NC}}\] (tính chất đường phân giác trong tam giác).

Mà \[\frac{{DA}}{{DB}} = \frac{{MA}}{{MB}}\] (câu a) và \[DB = DC\] nên \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}.\]

Xét \(\Delta ABC\) có: \[\frac{{MB}}{{MA}} = \frac{{NC}}{{NA}}\] (câu b) nên \[MN\,{\rm{//}}\,BC\](định lí Thalès đảo).

Tam giác \(AEK\) có \(\widehat {AKE} = \widehat {AEK}\) nên là tam giác cân tại \(A.\)

2)

1) Cho  tam giác ABC trung tuyến AD. Vẽ tia phân giác của góc ADB cắt AB tại M, tia phân giác của góc ADC cắt AC tại N. Chứng minh rằng:  a) MB/MA = BD/AD b) MN song song BC (ảnh 2)

a) Vì \(AD\,{\rm{//}}\,KM\) nên \(\widehat {BAD} = \widehat {BKM}\) (đồng vị).

Vì \(AD\,{\rm{//}}\,EM\) nên \(\widehat {CAD} = \widehat {CEM}\) (đồng vị).

Mà \(AD\) là tia phân giác của \(\widehat {BAC}\) nên \(\widehat {BAD} = \widehat {CAD}.\)

Do đó \(\widehat {BKM} = \widehat {CEM},\) lại có \(\widehat {CEM} = \widehat {AEK}\) nên \(\widehat {BKM} = \widehat {AEK}\) hay \(\widehat {AKE} = \widehat {AEK}.\)

b) Xét \(\Delta ACD\) có \(EM\,{\rm{//}}\,AD,\) theo định lí Thalès ta có \(\frac{{AE}}{{EC}} = \frac{{DM}}{{MC}}.\)

Mà \(\Delta AEK\) cân tại \(A\) nên \(AK = AE.\)

Lại có điểm \(M\) là trung điểm của \(BC\) nên \(MB = MC.\)

Do đó \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}.\)

Xét \(\Delta BMK\) có \(AD\,{\rm{//}}\,KM,\) theo định lí Thalès ta có \(\frac{{DM}}{{BM}} = \frac{{AK}}{{BK}}.\)

Mà \(\frac{{AK}}{{EC}} = \frac{{DM}}{{MB}}\) nên \(\frac{{AK}}{{EC}} = \frac{{AK}}{{BK}},\) do đó \(EC = BK.\)

Câu 2

A. \(\frac{5}{8}.\)  
B. \(\frac{5}{{11}}.\)  
C. \(\frac{3}{{11}}.\)   
D. \(\frac{8}{{11}}.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Cho điểm M thuộc đoạn thẳng AB, thỏa mãn AM/MB =3/8. Tỉ số AM/AB là (ảnh 1)

Theo tính chất tỉ lệ thức ta có từ \(\frac{{AM}}{{MB}} = \frac{3}{8},\) suy ra \(\frac{{AM}}{{AM + MB}} = \frac{3}{{3 + 8}}\) hay \[\frac{{AM}}{{AB}} = \frac{3}{{11}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(f\left( { - 1} \right) =  - 3.\) 
B. \(f\left( 1 \right) = 1.\)
C. \(f\left( { - 1} \right) =  - 1.\)       
D. \(f\left( 1 \right) = 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Khi \(a < 0\) thì góc tạo bởi đường thẳng \(y = ax + b\) và trục \[Ox\] là góc nhọn.        
B. Khi \(a = 0\) thì đường thẳng \(y = ax + b\) song song với trục \(Oy.\)        
C. Đường thẳng \(y = ax + b\) đi qua điểm \(\left( {0;b} \right).\)
D. Với \(a \ne 0,\) khi \(a\) càng lớn thì góc tạo bởi đường thẳng \(y = ax + b\) và trục \[Ox\] càng nhỏ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP