Cho hình vẽ bên, biết \[DE\,{\rm{//}}\,BC,\] \[EF\,{\rm{//}}\,CD\,.\] Tỉ số nào sau đây là sai?

Cho hình vẽ bên, biết \[DE\,{\rm{//}}\,BC,\] \[EF\,{\rm{//}}\,CD\,.\] Tỉ số nào sau đây là sai?

Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Xét \(\Delta ABC\) với \[DE\,{\rm{//}}\,BC,\] ta có:
⦁ \(\frac{{AD}}{{DB}} = \frac{{AE}}{{EC}}\) (định lí Thalès). Do đó B là khẳng định đúng.
⦁ \[\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}} = \frac{{DE}}{{BC}}\] (hệ quả của định lí Thalès).
Xét \(\Delta ADC\) với \[EF\,{\rm{//}}\,CD\,,\] ta có:
⦁ \(\frac{{AF}}{{AD}} = \frac{{EF}}{{CD}} = \frac{{AE}}{{AC}}\) (hệ quả của định lí Thalès). Do đó A là khẳng định đúng.
Mà \[\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}} = \frac{{DE}}{{BC}}\] nên \[\frac{{EF}}{{CD}} = \frac{{DE}}{{BC}}.\] Do đó D là khẳng định sai.
\(\frac{{AF}}{{AD}} = \frac{{AD}}{{AB}}.\) Do đó C là khẳng định đúng.
Vậy ta chọn phương án D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) ⦁ Vẽ đồ thị hàm số \(y = x + 3:\)
Cho \(x = 0,\) ta có \(y = 3;\)
Cho \(y = 0,\) ta có \(x = - 3.\) wertyuiop[4567890
Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( { - 3;0} \right).\)
⦁ Vẽ đồ thị hàm số \(y = - \frac{1}{2}x + 3:\)
Cho \(x = 0,\) ta có \(y = 3;\)
Cho \(y = 0,\) ta có \(x = 6.\)
Đồ thị hàm số \(y = - \frac{1}{2}x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( {6;0} \right).\)
b)
Giao điểm đồ thị của hàm số (1) với trục hoành là \(M\left( { - 3;0} \right);\)
Giao điểm đồ thị của hàm số (2) với trục hoành là \(N\left( {6;0} \right);\)
Giao điểm của hai đồ thị hàm số (1) và hàm số (2) là \(P\left( {0;3} \right).\)
Vậy \(M\left( { - 3;0} \right);\,\,N\left( {6;0} \right);\,\,P\left( {0;3} \right).\)
c) Tính độ dài các cạnh của \(\Delta MNP:\)
\(MN = MO + ON = 3 + 6 = 9{\rm{\;}}\left( {{\rm{cm}}} \right);\)
\(MP = \sqrt {M{O^2} + P{O^2}} = \sqrt {{3^2} + {3^2}} = \sqrt {18} = 3\sqrt 2 {\rm{\;}}\left( {{\rm{cm}}} \right);\)
\(NP = \sqrt {O{P^2} + O{N^2}} = \sqrt {{3^2} + {6^2}} = \sqrt {45} = 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Diện tích của \(\Delta MNP\) là: \({S_{\Delta MNP}} = \frac{1}{2}PO \cdot MN = \frac{1}{2} \cdot 3 \cdot 9 = \frac{{27}}{2}\,\,\left( {\;{\rm{c}}{{\rm{m}}^2}} \right).\)
Chu vi tam giác \(MNP\) là: \(9 + 3\sqrt 2 + 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Khi \(a < 0\) thì góc tạo bởi đường thẳng \(y = ax + b\) và trục \(Ox\) là góc tù.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
