Cho hình vẽ bên, biết \[DE\,{\rm{//}}\,BC,\] \[EF\,{\rm{//}}\,CD\,.\] Tỉ số nào sau đây là sai?

Cho hình vẽ bên, biết \[DE\,{\rm{//}}\,BC,\] \[EF\,{\rm{//}}\,CD\,.\] Tỉ số nào sau đây là sai?

Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Xét \(\Delta ABC\) với \[DE\,{\rm{//}}\,BC,\] ta có:
⦁ \(\frac{{AD}}{{DB}} = \frac{{AE}}{{EC}}\) (định lí Thalès). Do đó B là khẳng định đúng.
⦁ \[\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}} = \frac{{DE}}{{BC}}\] (hệ quả của định lí Thalès).
Xét \(\Delta ADC\) với \[EF\,{\rm{//}}\,CD\,,\] ta có:
⦁ \(\frac{{AF}}{{AD}} = \frac{{EF}}{{CD}} = \frac{{AE}}{{AC}}\) (hệ quả của định lí Thalès). Do đó A là khẳng định đúng.
Mà \[\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}} = \frac{{DE}}{{BC}}\] nên \[\frac{{EF}}{{CD}} = \frac{{DE}}{{BC}}.\] Do đó D là khẳng định sai.
\(\frac{{AF}}{{AD}} = \frac{{AD}}{{AB}}.\) Do đó C là khẳng định đúng.
Vậy ta chọn phương án D.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) ⦁ Vẽ đồ thị hàm số \(y = x + 3:\)
Cho \(x = 0,\) ta có \(y = 3;\)
Cho \(y = 0,\) ta có \(x = - 3.\) wertyuiop[4567890
Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( { - 3;0} \right).\)
⦁ Vẽ đồ thị hàm số \(y = - \frac{1}{2}x + 3:\)
Cho \(x = 0,\) ta có \(y = 3;\)
Cho \(y = 0,\) ta có \(x = 6.\)
Đồ thị hàm số \(y = - \frac{1}{2}x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( {6;0} \right).\)
b)
Giao điểm đồ thị của hàm số (1) với trục hoành là \(M\left( { - 3;0} \right);\)
Giao điểm đồ thị của hàm số (2) với trục hoành là \(N\left( {6;0} \right);\)
Giao điểm của hai đồ thị hàm số (1) và hàm số (2) là \(P\left( {0;3} \right).\)
Vậy \(M\left( { - 3;0} \right);\,\,N\left( {6;0} \right);\,\,P\left( {0;3} \right).\)
c) Tính độ dài các cạnh của \(\Delta MNP:\)
\(MN = MO + ON = 3 + 6 = 9{\rm{\;}}\left( {{\rm{cm}}} \right);\)
\(MP = \sqrt {M{O^2} + P{O^2}} = \sqrt {{3^2} + {3^2}} = \sqrt {18} = 3\sqrt 2 {\rm{\;}}\left( {{\rm{cm}}} \right);\)
\(NP = \sqrt {O{P^2} + O{N^2}} = \sqrt {{3^2} + {6^2}} = \sqrt {45} = 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Diện tích của \(\Delta MNP\) là: \({S_{\Delta MNP}} = \frac{1}{2}PO \cdot MN = \frac{1}{2} \cdot 3 \cdot 9 = \frac{{27}}{2}\,\,\left( {\;{\rm{c}}{{\rm{m}}^2}} \right).\)
Chu vi tam giác \(MNP\) là: \(9 + 3\sqrt 2 + 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Lời giải
a) Xét \(\Delta ABC\) có \(AD\) là tia phân giác của \(\widehat {BAC},\) nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}}\) (tính chất đường phân giác), suy ra \(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}}.\)
Theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}} = \frac{{AB + AC}}{{DB + DC}} = \frac{{AB + AC}}{{BC}} = \frac{{6 + 9}}{{10}} = \frac{{15}}{{10}} = \frac{3}{2}.\)
Suy ra \(DB = \frac{2}{3}AB = \frac{2}{3} \cdot 6 = 4{\rm{\;cm}},\,\,DC = \frac{2}{3}AC = \frac{2}{3} \cdot 9 = 6{\rm{\;cm}}.\)
b) Từ \(AE = \frac{1}{3}AB\) suy ra \(\frac{{AE}}{{AB}} = \frac{1}{3}.\)
Từ \(AC = 3AF\) suy ra \(\frac{{AF}}{{AC}} = \frac{1}{3}.\)
Do đó \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{1}{3}.\)
Theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,BC.\)
c) i) Xét \(\Delta FBC\) có \(IA\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{FI}}{{FB}} = \frac{{AF}}{{FC}} = \frac{{IA}}{{BC}}.\,\,\,\left( 1 \right)\)
Xét \(\Delta EBC\) có \(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{EA}}{{EB}} = \frac{{AK}}{{BC}}.\,\,\,\left( 2 \right)\)
Xét \(\Delta ABC\) có \(EF\,{\rm{//}}\,BC\) (câu b) theo hệ quả định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{{EF}}{{BC}},\) suy ra \(\frac{{AE}}{{AE + AB}} = \frac{{AF}}{{AF + AC}},\) hay \(\frac{{AE}}{{EB}} = \frac{{AF}}{{FC}}.\,\,\,\left( 3 \right)\)
Từ (1), (2) và (3) suy ra \(\frac{{IA}}{{BC}} = \frac{{AK}}{{BC}},\) do đó \(AI = AK,\) hay \(A\) là trung điểm của \(IK.\)
ii) Xét \(\Delta EBC\) có \(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{CK}}{{CE}} = \frac{{CA}}{{CF}}.\,\,\,\left( 4 \right)\)
Từ (1) và (4) ta có \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = \frac{{AF}}{{FC}} + \frac{{CA}}{{CF}} = \frac{{FC}}{{FC}} = 1.\)
Vậy \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = 1.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
