Cho \(\Delta ABC\) có đường phân giác \(AD.\)
a) Giả sử \(AB = 6\;{\rm{cm}},\) \(BC = 10\;{\rm{cm}},\) \(AC = 9\;{\rm{cm}}.\) Tính độ dài đoạn thẳng \(BD.\)
b) Trên tia đối của các tia \(AB\) và \(AC,\) lần lượt lấy các điểm \(E\) và \(F\) sao cho \(AE = \frac{1}{3}AB,\,\,AC = 3AF.\) Chứng minh \(EF\,{\rm{//}}\,BC.\)
c) Qua \(A,\) kẻ đường thẳng \(d\) song song với \(BC.\) Đường thẳng \(d\) cắt \(BF\) và \(CE\) lần lượt tại \(I\) và \(K.\) Chứng minh:
i) \(A\) là trung điểm của \(IK.\) ii) \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = 1.\)
Cho \(\Delta ABC\) có đường phân giác \(AD.\)
a) Giả sử \(AB = 6\;{\rm{cm}},\) \(BC = 10\;{\rm{cm}},\) \(AC = 9\;{\rm{cm}}.\) Tính độ dài đoạn thẳng \(BD.\)
b) Trên tia đối của các tia \(AB\) và \(AC,\) lần lượt lấy các điểm \(E\) và \(F\) sao cho \(AE = \frac{1}{3}AB,\,\,AC = 3AF.\) Chứng minh \(EF\,{\rm{//}}\,BC.\)
c) Qua \(A,\) kẻ đường thẳng \(d\) song song với \(BC.\) Đường thẳng \(d\) cắt \(BF\) và \(CE\) lần lượt tại \(I\) và \(K.\) Chứng minh:
i) \(A\) là trung điểm của \(IK.\) ii) \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = 1.\)
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo có đáp án !!
Quảng cáo
Trả lời:
a) Xét \(\Delta ABC\) có \(AD\) là tia phân giác của \(\widehat {BAC},\) nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}}\) (tính chất đường phân giác), suy ra \(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}}.\)
Theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{{AB}}{{DB}} = \frac{{AC}}{{DC}} = \frac{{AB + AC}}{{DB + DC}} = \frac{{AB + AC}}{{BC}} = \frac{{6 + 9}}{{10}} = \frac{{15}}{{10}} = \frac{3}{2}.\)
Suy ra \(DB = \frac{2}{3}AB = \frac{2}{3} \cdot 6 = 4{\rm{\;cm}},\,\,DC = \frac{2}{3}AC = \frac{2}{3} \cdot 9 = 6{\rm{\;cm}}.\)
b) Từ \(AE = \frac{1}{3}AB\) suy ra \(\frac{{AE}}{{AB}} = \frac{1}{3}.\)
Từ \(AC = 3AF\) suy ra \(\frac{{AF}}{{AC}} = \frac{1}{3}.\)
Do đó \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{1}{3}.\)
Theo định lí Thalès đảo ta có \(EF\,{\rm{//}}\,BC.\)
c) i) Xét \(\Delta FBC\) có \(IA\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{FI}}{{FB}} = \frac{{AF}}{{FC}} = \frac{{IA}}{{BC}}.\,\,\,\left( 1 \right)\)
Xét \(\Delta EBC\) có \(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{EA}}{{EB}} = \frac{{AK}}{{BC}}.\,\,\,\left( 2 \right)\)
Xét \(\Delta ABC\) có \(EF\,{\rm{//}}\,BC\) (câu b) theo hệ quả định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{AF}}{{AC}} = \frac{{EF}}{{BC}},\) suy ra \(\frac{{AE}}{{AE + AB}} = \frac{{AF}}{{AF + AC}},\) hay \(\frac{{AE}}{{EB}} = \frac{{AF}}{{FC}}.\,\,\,\left( 3 \right)\)
Từ (1), (2) và (3) suy ra \(\frac{{IA}}{{BC}} = \frac{{AK}}{{BC}},\) do đó \(AI = AK,\) hay \(A\) là trung điểm của \(IK.\)
ii) Xét \(\Delta EBC\) có \(AK\,{\rm{//}}\,BC\) (do \(d\,{\rm{//}}\,BC)\) nên theo hệ quả định lí Thalès ta có: \(\frac{{CK}}{{CE}} = \frac{{CA}}{{CF}}.\,\,\,\left( 4 \right)\)
Từ (1) và (4) ta có \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = \frac{{AF}}{{FC}} + \frac{{CA}}{{CF}} = \frac{{FC}}{{FC}} = 1.\)
Vậy \(\frac{{FI}}{{FB}} + \frac{{CK}}{{CE}} = 1.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) ⦁ Vẽ đồ thị hàm số \(y = x + 3:\)
Cho \(x = 0,\) ta có \(y = 3;\)
Cho \(y = 0,\) ta có \(x = - 3.\) wertyuiop[4567890
Đồ thị hàm số \(y = x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( { - 3;0} \right).\)
⦁ Vẽ đồ thị hàm số \(y = - \frac{1}{2}x + 3:\)
Cho \(x = 0,\) ta có \(y = 3;\)
Cho \(y = 0,\) ta có \(x = 6.\)
Đồ thị hàm số \(y = - \frac{1}{2}x + 3\) là đường thẳng đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( {6;0} \right).\)
b)
Giao điểm đồ thị của hàm số (1) với trục hoành là \(M\left( { - 3;0} \right);\)
Giao điểm đồ thị của hàm số (2) với trục hoành là \(N\left( {6;0} \right);\)
Giao điểm của hai đồ thị hàm số (1) và hàm số (2) là \(P\left( {0;3} \right).\)
Vậy \(M\left( { - 3;0} \right);\,\,N\left( {6;0} \right);\,\,P\left( {0;3} \right).\)
c) Tính độ dài các cạnh của \(\Delta MNP:\)
\(MN = MO + ON = 3 + 6 = 9{\rm{\;}}\left( {{\rm{cm}}} \right);\)
\(MP = \sqrt {M{O^2} + P{O^2}} = \sqrt {{3^2} + {3^2}} = \sqrt {18} = 3\sqrt 2 {\rm{\;}}\left( {{\rm{cm}}} \right);\)
\(NP = \sqrt {O{P^2} + O{N^2}} = \sqrt {{3^2} + {6^2}} = \sqrt {45} = 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Diện tích của \(\Delta MNP\) là: \({S_{\Delta MNP}} = \frac{1}{2}PO \cdot MN = \frac{1}{2} \cdot 3 \cdot 9 = \frac{{27}}{2}\,\,\left( {\;{\rm{c}}{{\rm{m}}^2}} \right).\)
Chu vi tam giác \(MNP\) là: \(9 + 3\sqrt 2 + 3\sqrt 5 {\rm{\;}}\left( {{\rm{cm}}} \right).\)
Lời giải
a) Nhiệt lượng chì tỏa ra để giảm nhiệt độ từ \(100^\circ {\rm{C}}\) xuống \(t^\circ {\rm{C}}\) là:
\({Q_{chi}} = 0,31 \cdot 130 \cdot \left( {100 - t} \right) = - 40,3t + 4\,\,030\) (J).
b) Công thức \({Q_{chi}} = - 40,3t + 4\,\,030\) (J) là hàm số bậc nhất với hệ số \(a = - 40,3\) và \(b = 4\,\,030.\)
c) Nhiệt lượng nước thu vào để tăng nhiệt độ từ \(58,5^\circ {\rm{C}}\) lên \(t^\circ {\rm{C}}\) là:
\({Q_{nuoc}} = 0,25 \cdot 4\,\,200 \cdot \left( {t - 58,5} \right) = 1\,\,050t - 61\,\,425\) (J).
Khi cân bằng nhiệt, nhiệt lượng tỏa ra bằng với nhiệt lượng thu vào nên ta có:
\({Q_{nuoc}} = {Q_{chi}}\)
Do đó \(1\,\,050t - 61\,\,425 = - 40,3t + 4\,\,030\)
\(1\,\,090,3t = 65\,\,455\)
\(t \approx 60\)
Vậy nhiệt độ của nước và chì khi đạt trạng thái cân bằng nhiệt là khoảng \(60^\circ {\rm{C}}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
