Câu hỏi:

22/01/2026 3 Lưu

Hình vẽ dưới đây biểu diễn bài toán: “Cho hai góc kề bù \(\widehat {xOy}\)\(\widehat {yOz}\). Gọi \(Ot\) là tia phân giác của \(\widehat {xOy}\). Trong góc \(\widehat {yOz}\), vẽ tia \(Ot'\) vuông góc với tia \(Ot.\) Chứng minh \(Ot'\) là tia phân giác của \(\widehat {zOy}\)”.
Hình vẽ dưới đây biểu diễn bài toán: “Cho hai góc kề (ảnh 1)

Khi đó:

a) Giả thiết của bài toán là \(\widehat {xOy}\)\(\widehat {yOz}\) là hai góc kề bù; \(Ot\) là tia phân giác của \(\widehat {xOy}\).

Đúng
Sai

b) Kết luận của bài toán là “\(Ot'\) là tia phân giác của \(\widehat {zOy}\)”.

Đúng
Sai

c) \(\widehat {xOt} = \widehat {tOy}.\)

Đúng
Sai
d) \(\widehat {zOt'} = \widehat {t'Oy}.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai.

Các giả thiết của bài toán là: \(\widehat {xOy}\)\(\widehat {yOz}\) là hai góc kề bù; \(Ot\) là tia phân giác của \(\widehat {xOy}\); trong \(\widehat {yOz}\), vẽ tia \(Ot'\) vuông góc với tia \(Ot.\)

b) Đúng.

Kết luận của bài toán là: \(Ot'\) là tia phân giác của \(\widehat {zOy}\).

c) Đúng.

\(Ot\) là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {tOy} = \frac{{\widehat {xOy}}}{2}.\)

d) Đúng.

Ta có: \(\widehat {xOt} + \widehat {t'Oz} = 90^\circ \)\(\widehat {yOt} + \widehat {t'Oy} = 90^\circ \).

\(\widehat {xOt} = \widehat {tOy} = \frac{{\widehat {xOy}}}{2}\) nên \(Ot'\) là tia phân giác của \(\widehat {zOy}\)\(\widehat {zOt'} = \widehat {t'Oy}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Giả thiết của bài toán là \(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh và \(Ot,\,\,\,Ot'\) lần lượt là tia phân giác của \(\widehat {xOy},\,\,\widehat {x'Oy'}\).

Đúng
Sai

b) \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\).

Đúng
Sai

c) \(\widehat {tOt'} = 180^\circ .\)

Đúng
Sai
d) Kết luận của bài toán là hai tia \(Ot,\,\,t'O\) là hai tia đối nhau.
Đúng
Sai

Lời giải

a) Đúng.

Ta có giả thiết của bài toán là: \(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh và \(Ot,\,\,\,Ot'\) lần lượt là tia phân giác

của \(\widehat {xOy},\,\,\widehat {x'Oy'}\).

b) Đúng.

\(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh nên \(\widehat {xOy} = \,\widehat {x'Oy'}\).

\(Ot,\,\,\,Ot'\) lần lượt là tia phân giác của \(\widehat {xOy},\,\,\widehat {x'Oy'}\) nên \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\).

c) Đúng.

Ta có: \(\widehat {tOt'} = \widehat {{O_1}} + \widehat {xOy'} + \widehat {{O_3}} = \widehat {{O_1}} + \widehat {{O_2}} + \widehat {xOy'} = \widehat {xOy} + \widehat {xOy'} = \widehat {yOy'} = 180^\circ .\)

d) Sai.

Kết luận của bài toán là hai tia \(Ot,\,\,Ot'\) là hai tia đối nhau.

Câu 2

a) Giả thiết của bài toán là: \[\widehat {COB},\,\,\widehat {BOA}\] là hai góc kề bù và \(ON,\,\,OM\) lần lượt là phân giác của \[\widehat {COB},\,\,\widehat {BOA}\].        

Đúng
Sai

b) \[\widehat {NOB} = \widehat {MOB} = \frac{{\widehat {COB}}}{2}\].

Đúng
Sai

c) \[\widehat {NOB} + \widehat {MOB} = 90^\circ \].

Đúng
Sai
d) Kết luận của bài toán là \[\widehat {NOM} = 90^\circ \].
Đúng
Sai

Lời giải

a) Đúng.

Giả thiết của bài toán là: \[\widehat {COB},\,\,\widehat {BOA}\] là hai góc kề bù và \(ON,\,\,OM\) lần lượt là phân giác của

\[\widehat {COB},\,\,\widehat {BOA}\].

b) Sai.

\(ON\) là tia phân giác của \[\widehat {COB}\] nên \[\widehat {NOB} = \widehat {CON} = \frac{{\widehat {COB}}}{2}\].

c) Đúng.

\(ON,\,\,OM\) lần lượt là phân giác của \[\widehat {COB},\,\,\widehat {BOA}\] nên \[\widehat {NOB} = \frac{{\widehat {COB}}}{2}\]\[\widehat {MOB} = \frac{{\widehat {AOB}}}{2}\].

Do đó, \[\widehat {NOB} + \widehat {MOB} = \frac{{\widehat {COB}}}{2} + \frac{{\widehat {AOB}}}{2} = \frac{{\widehat {COB} + \widehat {AOB}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].

d) Đúng.

Kết luận của bài toán là \[\widehat {NOM} = 90^\circ \].

Câu 3

a) \(\widehat {ACB},\,\,\widehat {CBF}\) là hai góc ở vị trí so le trong.

Đúng
Sai

b) \(ED\) không song song với \(GF.\)

Đúng
Sai

c) \(\widehat {ABF} = 90^\circ \)

Đúng
Sai
d) \(AB \bot \,GF\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(\widehat A + \widehat B + \widehat C = 180^\circ \).

Đúng
Sai

b) \(\widehat A = 90^\circ - \widehat C\).

Đúng
Sai

c) \(\widehat A - \widehat B = 2\widehat C\).

Đúng
Sai
d) \(\widehat A = \widehat B\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Nếu \(a\parallel b;{\rm{ }}b\parallel c\) thì \(a \bot c.\)            

B. Nếu \(a \bot b;{\rm{ }}b \bot c\) thì \(a \bot c.\)

C. Nếu \(a \bot b;{\rm{ }}b\parallel c\) thì \(a\parallel c.\)             
D. Nếu \(a\parallel b;{\rm{ }}b\parallel c\) thì \(a\parallel c.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP