Câu hỏi:

22/01/2026 5 Lưu

Cho giả thiết: \(\widehat A + \widehat C = 90^\circ ;\,\,\widehat B + \widehat C = 90^\circ \). Khi đó:

a) \(\widehat A + \widehat B + \widehat C = 180^\circ \).

Đúng
Sai

b) \(\widehat A = 90^\circ - \widehat C\).

Đúng
Sai

c) \(\widehat A - \widehat B = 2\widehat C\).

Đúng
Sai
d) \(\widehat A = \widehat B\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai.

Ta có: \(\widehat A + \widehat C = 90^\circ ;\,\,\widehat B + \widehat C = 90^\circ \) nên cộng theo vế ta được \(\widehat A + \widehat C + \widehat B + \widehat C = 90^\circ + 90^\circ \).

Suy ra \(\widehat A + \widehat B + 2\widehat C = 180^\circ \).

b) Đúng.

Ta có \(\widehat A + \widehat C = 90^\circ \) nên \(\widehat A = 90^\circ - \widehat C\).

c) Sai.

Ta có: \(\widehat A + \widehat C = 90^\circ ;\,\,\widehat B + \widehat C = 90^\circ \) nên trừ theo vế ta được: \(\widehat A + \widehat C - \left( {\,\widehat B + \widehat C} \right) = 90^\circ - 90^\circ \).

Suy ra \(\widehat A + \widehat C - \widehat B - \widehat C = 0\) hay \(\widehat A - \widehat B = 0\).

d) Đúng.

Vì có \(\widehat A + \widehat C = 90^\circ \) nên \(\widehat A = 90^\circ - \widehat C\)\(\,\widehat B + \widehat C = 90^\circ \) nên \(\widehat B = 90^\circ - \widehat C\).

Do đó, \(\widehat A = \widehat B = 90^\circ - \widehat C\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Giả thiết của bài toán là \(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh và \(Ot,\,\,\,Ot'\) lần lượt là tia phân giác của \(\widehat {xOy},\,\,\widehat {x'Oy'}\).

Đúng
Sai

b) \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\).

Đúng
Sai

c) \(\widehat {tOt'} = 180^\circ .\)

Đúng
Sai
d) Kết luận của bài toán là hai tia \(Ot,\,\,t'O\) là hai tia đối nhau.
Đúng
Sai

Lời giải

a) Đúng.

Ta có giả thiết của bài toán là: \(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh và \(Ot,\,\,\,Ot'\) lần lượt là tia phân giác

của \(\widehat {xOy},\,\,\widehat {x'Oy'}\).

b) Đúng.

\(\widehat {xOy},\,\,\widehat {x'Oy'}\) là hai góc đối đỉnh nên \(\widehat {xOy} = \,\widehat {x'Oy'}\).

\(Ot,\,\,\,Ot'\) lần lượt là tia phân giác của \(\widehat {xOy},\,\,\widehat {x'Oy'}\) nên \(\widehat {{O_1}} = \widehat {{O_2}} = \widehat {{O_3}} = \widehat {{O_4}}\).

c) Đúng.

Ta có: \(\widehat {tOt'} = \widehat {{O_1}} + \widehat {xOy'} + \widehat {{O_3}} = \widehat {{O_1}} + \widehat {{O_2}} + \widehat {xOy'} = \widehat {xOy} + \widehat {xOy'} = \widehat {yOy'} = 180^\circ .\)

d) Sai.

Kết luận của bài toán là hai tia \(Ot,\,\,Ot'\) là hai tia đối nhau.

Câu 2

a) Giả thiết của bài toán là: \[\widehat {COB},\,\,\widehat {BOA}\] là hai góc kề bù và \(ON,\,\,OM\) lần lượt là phân giác của \[\widehat {COB},\,\,\widehat {BOA}\].        

Đúng
Sai

b) \[\widehat {NOB} = \widehat {MOB} = \frac{{\widehat {COB}}}{2}\].

Đúng
Sai

c) \[\widehat {NOB} + \widehat {MOB} = 90^\circ \].

Đúng
Sai
d) Kết luận của bài toán là \[\widehat {NOM} = 90^\circ \].
Đúng
Sai

Lời giải

a) Đúng.

Giả thiết của bài toán là: \[\widehat {COB},\,\,\widehat {BOA}\] là hai góc kề bù và \(ON,\,\,OM\) lần lượt là phân giác của

\[\widehat {COB},\,\,\widehat {BOA}\].

b) Sai.

\(ON\) là tia phân giác của \[\widehat {COB}\] nên \[\widehat {NOB} = \widehat {CON} = \frac{{\widehat {COB}}}{2}\].

c) Đúng.

\(ON,\,\,OM\) lần lượt là phân giác của \[\widehat {COB},\,\,\widehat {BOA}\] nên \[\widehat {NOB} = \frac{{\widehat {COB}}}{2}\]\[\widehat {MOB} = \frac{{\widehat {AOB}}}{2}\].

Do đó, \[\widehat {NOB} + \widehat {MOB} = \frac{{\widehat {COB}}}{2} + \frac{{\widehat {AOB}}}{2} = \frac{{\widehat {COB} + \widehat {AOB}}}{2} = \frac{{180^\circ }}{2} = 90^\circ \].

d) Đúng.

Kết luận của bài toán là \[\widehat {NOM} = 90^\circ \].

Câu 3

a) \(\widehat {ACB},\,\,\widehat {CBF}\) là hai góc ở vị trí so le trong.

Đúng
Sai

b) \(ED\) không song song với \(GF.\)

Đúng
Sai

c) \(\widehat {ABF} = 90^\circ \)

Đúng
Sai
d) \(AB \bot \,GF\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu \(a\parallel b;{\rm{ }}b\parallel c\) thì \(a \bot c.\)            

B. Nếu \(a \bot b;{\rm{ }}b \bot c\) thì \(a \bot c.\)

C. Nếu \(a \bot b;{\rm{ }}b\parallel c\) thì \(a\parallel c.\)             
D. Nếu \(a\parallel b;{\rm{ }}b\parallel c\) thì \(a\parallel c.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng vuông góc với nhau.

B. Một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.

C. Hai góc bằng nhau thì đối đỉnh.

D. Hai góc đối đỉnh thì bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP