Câu hỏi:

23/01/2026 8 Lưu

PHẦN II. TỰ LUẬN

Nhà may \(A\) sản xuất một lô áo gồm 200 chiếc áo với giá vốn là \[30\,\,000\,\,000\] (đồng) và giá bán một chiếc áo là \[300\,\,000\] (đồng). Khi đó gọi \(K\) (đồng) là số tiền lời (hoặc lỗ) củ nhà may thu được khi bán \(t\) chiếc áo.

a) Viết hàm số biểu diễn số tiền lời (hoặc lỗ) \(K\) của nhà may thu được khi bán \(t\) chiếc áo. Hỏi nhà may cần phải bán bao nhiêu chiếc áo mới có thể thu hồi được vốn ban đầu?

b) Để lời được \[6\,\,000\,\,000\] đồng thì nhà may cần phải bán bao nhiêu chiếc áo?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Hàm số biểu diễn số tiền lời (hoặc lỗ) \(K\) của nhà may thu được khi bán \(t\) chiếc áo là: \(K = 300\,\,000t - 30\,\,000\,\,000\) (đồng) (với \(0 \le t \le 200).\)

Để nhà may thu hồi được vốn ban đầu thì \(K = 0,\) ta thay vào công thức\(K = 300\,\,000t - 30\,\,000\,\,000,\) ta được:

\[0 = 300\,\,000t - 30\,\,000\,\,000,\] suy ra \(t = 100.\)

Vậy cần phải bán ra được 100 chiếc áo mới thu hồi được vốn ban đầu.

b) Để nhà may lời được \(6\,\,000\,\,000\) thì \(K = 6\,\,000\,\,000,\) thay vào công thức \(K = 300\,\,000t - 30\,\,000\,\,000,\) ta được:

\(6\,\,000\,\,000 = 300\,\,000t - 30\,\,000\,\,000,\) suy ra \(t = 120.\)

Vậy cần phải bán ra được 120 chiếc áo mới lời được 6 000 000 đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[y = 2 - \frac{1}{x}.\] 
B. \[y = 2 - \frac{{4x}}{3}.\]  
C. \[y = {x^2} + 5.\] 
D. \[y = 2\sqrt x  + 6.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Hàm số bậc nhất có dạng \(y = ax + b\) với \(a \ne 0.\)

Hàm số \[y = 2 - \frac{{4x}}{3} =  - \frac{4}{3}x + 2\] có dạng trên nên là hàm số bậc nhất.

Lời giải

Hướng dẫn giải

a) Với \(m \ne 1,\) để đường thẳng \(\left( d \right):y = \left( {m - 1} \right)x + m\) song song với đường thẳng \(\left( {d'} \right):y = 2x - 3\) thì \(m - 1 = 2\) và \(m \ne  - 3,\) tức là \(m = 3\) (thỏa mãn \(m \ne 1,\,\,m \ne  - 3).\)

Vậy \(m = 3.\)

b) ⦁ Với \(m = 3,\) ta có hàm số \(y = 2x + 3.\)

Cho \(x = 0,\) ta có \(y = 3.\)

Cho \(x =  - 1,\) ta có \(y = 1.\)

Đồ thị hàm số \(y = 2x + 3\) là đường thẳng \(\left( d \right)\) đi qua hai điểm \(\left( {0;3} \right)\) và \(\left( { - 1;1} \right).\)

⦁ Xét hàm số \(y = 2x - 3.\)

Cho \(x = 0,\) ta có \(y =  - 3.\)

Cho \(x = 1,\) ta có \(y =  - 1.\)

Đồ thị hàm số \(y = 2x - 3\) là đường thẳng \(\left( {d'} \right)\) đi qua hai điểm \(\left( {0; - 3} \right)\) và \(\left( {1; - 1} \right).\)

Cho hàm số y = (m - 1)x + m (m là tham số m khác 1) có đồ thị là đường thẳng (d).  a) Tìm m để (d):y = (m - 1)x + m song song với (d'):y = 2x - 3 (ảnh 1)

c) Gọi \(A\left( {{x_A};\,\,{y_A}} \right)\) là giao điểm của hai đường thẳng \(y = x + 2;y = \frac{1}{2}x + 3.\)

Vì \(A\) thuộc đường thẳng \(y = x + 2\) nên ta có \({y_A} = {x_A} + 2.\) Khi đó \(A\left( {{x_A};\,\,{x_A} + 2} \right).\)

Vì \(A\) thuộc đường thẳng \(y = \frac{1}{2}x + 3\) nên ta có \({x_A} + 2 = \frac{1}{2}{x_A} + 3,\) suy ra \(\frac{1}{2}{x_A} = 1,\) do đó \({x_A} = 2.\)

Từ đó ta có \({y_A} = {x_A} + 2 = 2 + 2 = 4.\)

Vì vậy ta được \(A\left( {2;4} \right).\)

Để ba đường thẳng \(y = x + 2;y = \frac{1}{2}x + 3\) và \(\left( d \right):y = \left( {m - 1} \right)x + m\) đồng quy thì đường thẳng \(\left( d \right)\) phải đi qua giao điểm \(A\left( {2;4} \right)\) của hai đường thẳng \(y = x + 2;y = \frac{1}{2}x + 3.\)

Khi đó \(x = 2,\,\,y = 4\) thỏa mãn hàm số \(y = \left( {m - 1} \right)x + m,\) ta được:

\(4 = \left( {m - 1} \right) \cdot 2 + m,\) suy ra \(2m - 2 + m = 4,\) do đó \(3m = 6,\) nên \(m = 2\) (thỏa mãn \(m \ne 1).\)

Vậy \(m = 2.\)

Câu 3

1) Tìm độ dài \[x\] trong mỗi trường hợp sau:

 

2) Cho hình thang ABCD có hai đáy AB và CD. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC. a) Chứng minh rằng EF song song AB (ảnh 1)

Hình 1

2) Cho hình thang ABCD có hai đáy AB và CD. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC. a) Chứng minh rằng EF song song AB (ảnh 2)


Hình 2

2) Cho hình thang \(ABCD\) có hai đáy \(AB\) và \(CD.\) Gọi \(M\) là trung điểm của \(CD,\) \(E\) là giao điểm của \(MA\) và \(BD,\) \(F\) là giao điểm của \(MB\) và \(AC.\)

a) Chứng minh rằng \[EF\,{\rm{//}}\,AB.\]

b) Đường thẳng \(EF\) cắt \(AD,\,\,BC\) lần lượt tại \(H\) và \(N.\)

i) Chứng minh \(HE = EF = FN.\)

ii) Biết \(AB = 7,5{\rm{\;cm}},\,\,CD = 12{\rm{\;cm}}.\) Tính độ dài \(HN.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. góc nhọn.  
B. góc vuông.
C. góc tù.
D. góc bẹt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{AE}}{{ED}} = \frac{{AI}}{{IC}}.\)               
B. \(\frac{{AE}}{{ED}} = \frac{{BF}}{{FC}}.\)
C. \(\frac{{AI}}{{AC}} = \frac{{EI}}{{DC}}.\)
D. \(\frac{{IC}}{{IA}} = \frac{{IF}}{{AB}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{5}{4}.\)   
B. \(\frac{4}{5}.\)
C. \(\frac{4}{9}.\) 
D. \[\frac{5}{9}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP