Giả sử rằng lượng cung \[S\] và lượng cầu \[D\] về áo phông tại một buổi biểu diễn được cho bởi các hàm số sau:
\[S\left( p \right) = --600 + 10p;{\rm{ }}\,\,\,D\left( p \right) = 1{\rm{ }}200--20p,\]
trong đó \[p\] (nghìn đồng) là giá của một chiếc áo phông.
a) Tìm mức giá cân bằng (tức là mức giá mà lượng cung bằng lượng cầu) của áo phông tại buổi biểu diễn này.
b) Vẽ đồ thị của hai hàm số \[S\left( p \right)\] và \[D\left( p \right)\] trên cùng một hệ trục tọa độ.
c) Từ đồ thị vẽ được ở câu b, xác định mức giá của áo phông mà lượng cung lớn hơn lượng cầu. Khi đó, điều gì sẽ xảy ra?
Giả sử rằng lượng cung \[S\] và lượng cầu \[D\] về áo phông tại một buổi biểu diễn được cho bởi các hàm số sau:
\[S\left( p \right) = --600 + 10p;{\rm{ }}\,\,\,D\left( p \right) = 1{\rm{ }}200--20p,\]
trong đó \[p\] (nghìn đồng) là giá của một chiếc áo phông.
a) Tìm mức giá cân bằng (tức là mức giá mà lượng cung bằng lượng cầu) của áo phông tại buổi biểu diễn này.
b) Vẽ đồ thị của hai hàm số \[S\left( p \right)\] và \[D\left( p \right)\] trên cùng một hệ trục tọa độ.
c) Từ đồ thị vẽ được ở câu b, xác định mức giá của áo phông mà lượng cung lớn hơn lượng cầu. Khi đó, điều gì sẽ xảy ra?
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 8 Chân trời sáng tạo có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Mức giá khi lượng cung bằng lượng cầu là giá trị \[{x_0}\] thỏa mãn:
\[--600 + 10{x_0} = 1{\rm{ }}200--20{x_0}\]
\[30{x_0} = 1{\rm{ }}800\]
\[{x_0} = 60\]
Vậy mức giá cân bằng là 60 nghìn đồng.
b) Đồ thị hàm số \[S\left( p \right)\] đi qua hai điểm \[\left( {0;--600} \right)\] và \[\left( {60;{\rm{ }}0} \right).\]
Đồ thị hàm số \[D\left( p \right)\] đi qua hai điểm \[\left( {0;{\rm{ }}1{\rm{ }}200} \right)\] và \[\left( {60;{\rm{ }}0} \right).\]
Đồ thị của hai hàm số được vẽ trong hình dưới:
c) Từ đồ thị trên, ta thấy khi giá của mỗi chiếc áo lớn hơn 60 nghìn đồng thì lượng cung lớn hơn lượng cầu. Khi đó sẽ có một lượng áo phông bị tồn kho (do không bán được).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Xét \(\Delta ABC\) có \(AD\) là đường phân giác của \[\widehat {BAC}\] nên \(\frac{{AB}}{{AC}} = \frac{{DB}}{{DC}}\) (tính chất đường phân giác).
Do đó \[\frac{{DB}}{{AB}} = \frac{{DC}}{{AC}}\] (tính chất tỉ lệ thức).Lời giải
Hướng dẫn giải
a) Để đường thẳng \(\left( d \right):y = \left( {m + 2} \right)x + m\) song song với đường thẳng \(\left( {d'} \right):y = - x + 2\) thì \(m + 2 = - 1\) và \[m \ne - 1,\] do đó \(m = - 3\) (thỏa mãn \[m \ne - 1).\]
Vậy \(m = - 3.\)
b) Để đường thẳng \(\left( d \right):y = \left( {m + 2} \right)x + m\) cắt trục \(Ox\) thì \(m + 2 \ne 0,\) hay \(m \ne - 2.\)
Vì \(A \in Ox\) nên ta gọi \(A\left( {{x_1};0} \right)\) và vì \(B \in Oy\) nên ta gọi \(B\left( {0;{y_2}} \right).\)
Vì \(A\left( {{x_1};0} \right) \in \left( d \right):y = \left( {m + 2} \right)x + m\) nên ta có \(0 = \left( {m + 2} \right){x_1} + m,\) suy ra \({x_1} = - \frac{m}{{m + 2}}\) (do \(m \ne - 2).\) Do đó \(A\left( { - \frac{m}{{m + 2}};0} \right).\) Suy ra \(OA = \left| { - \frac{m}{{m + 2}}} \right| = \frac{{\left| m \right|}}{{\left| {m + 2} \right|}}.\)
Vì \(B\left( {0;{y_2}} \right) \in \left( d \right):y = \left( {m + 2} \right)x + m\) nên ta có \({y_2} = \left( {m + 2} \right) \cdot 0 + m = m.\) Do đó \(B\left( {0;m} \right).\) Suy ra \(OB = \left| m \right|.\)
Khi đó diện tích tam giác \(OAB\) vuông tại \(O\) là \({S_{OAB}} = \frac{1}{2}OA \cdot OB = \frac{1}{2} \cdot \frac{{\left| m \right|}}{{\left| {m + 2} \right|}} \cdot \left| m \right| = \frac{1}{2} \cdot \frac{{{m^2}}}{{\left| {m + 2} \right|}}.\)
Theo bài, \({S_{OAB}} = \frac{1}{2},\) nên \(\frac{1}{2} \cdot \frac{{{m^2}}}{{\left| {m + 2} \right|}} = \frac{1}{2},\) suy ra \({m^2} = \left| {m + 2} \right|.\)
Vì \({m^2} \ge 0\) với mọi \(m \ne - 2\) nên ta xét hai trường hợp:
Trường hợp 1. \(m + 2 = {m^2}\)
\({m^2} - m - 2 = 0\)
\({m^2} + m - 2m - 2 = 0\)
\(m\left( {m + 1} \right) - 2\left( {m + 1} \right) = 0\)
\(\left( {m + 1} \right)\left( {m - 2} \right) = 0\)
\(m + 1 = 0\) hoặc \(m - 2 = 0\)
\(m = - 1\) (thỏa mãn) hoặc \(m = 2\) (thỏa mãn).
Trường hợp 2. \(m + 2 = - {m^2}\)
\({m^2} + m + 2 = 0\)
\({m^2} + 2 \cdot m \cdot \frac{1}{2} + \frac{1}{4} + \frac{7}{4} = 0\)
\({\left( {m + \frac{1}{2}} \right)^2} + \frac{7}{4} = 0\)
Vì \({\left( {m + \frac{1}{2}} \right)^2} \ge 0\) với mọi \(m \ne - 2\) nên \({\left( {m + \frac{1}{2}} \right)^2} + \frac{7}{4} > 0,\) do đó trường hợp này không xảy ra.
Vậy \(m \in \left\{ { - 1;2} \right\}.\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
