Phần III (1 điểm). Thí sinh trả lời từ câu 1 đến câu 4. Đối với mỗi câu, thí sinh chỉ viết kết quả, không trình bày suy luận. Đối với mỗi câu trả lời đúng, thí sinh được 0,25 điểm.
Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai đường thẳng chéo nhau \({d_1}:\frac{{x - 2}}{2} = \frac{{y - 6}}{{ - 2}} = \frac{{z + 2}}{1}\) và \({d_2}:\frac{{x - 4}}{1} = \frac{{y + 1}}{3} = \frac{{z + 2}}{{ - 2}}\). Gọi \(\left( P \right)\) là mặt phẳng chứa \({d_1}\) và \(\left( P \right)\) song song với đường thẳng \({d_2}\). Tính khoảng cách từ điểm \(M\left( { - 1;3;2} \right)\) đến mặt phẳng \(\left( P \right)\).
Phần III (1 điểm). Thí sinh trả lời từ câu 1 đến câu 4. Đối với mỗi câu, thí sinh chỉ viết kết quả, không trình bày suy luận. Đối với mỗi câu trả lời đúng, thí sinh được 0,25 điểm.
Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai đường thẳng chéo nhau \({d_1}:\frac{{x - 2}}{2} = \frac{{y - 6}}{{ - 2}} = \frac{{z + 2}}{1}\) và \({d_2}:\frac{{x - 4}}{1} = \frac{{y + 1}}{3} = \frac{{z + 2}}{{ - 2}}\). Gọi \(\left( P \right)\) là mặt phẳng chứa \({d_1}\) và \(\left( P \right)\) song song với đường thẳng \({d_2}\). Tính khoảng cách từ điểm \(M\left( { - 1;3;2} \right)\) đến mặt phẳng \(\left( P \right)\).
Câu hỏi trong đề: Đề ôn thi ĐGNL ĐHSP Hà Nội môn Toán có đáp án !!
Quảng cáo
Trả lời:
Ta có \({d_1}\) đi qua điểm \(A\left( {2;6; - 2} \right)\) và có một vectơ chỉ phương \(\vec u = \left( {2; - 2;1} \right);{d_2}\) có một vectơ chỉ phương \(\overrightarrow {u'} = \left( {1;3; - 2} \right)\).
Vectơ pháp tuyến của \(\left( P \right)\) là \(\vec n = \left[ {\vec u,\overrightarrow {u'} } \right] = \left( {1;5;8} \right)\). Phương trình \(\left( P \right)\) là \(x + 5y + 8z - 16 = 0\).
Vậy \({\rm{d}}\left( {M,\left( P \right)} \right) = \frac{{\left| { - 1 + 15 + 16 - 16} \right|}}{{\sqrt {{1^2} + {5^2} + {8^2}} }} = \frac{{7\sqrt {10} }}{{15}}\).
Trả lời: \(\frac{{7\sqrt {10} }}{{15}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(I\) là giao điểm của 2 cung tròn . Chọn gốc toạ độ \(A\left( {0;0} \right)\) và hệ trục tọa độ \(Axy\) như hình vẽ\( \Rightarrow B\left( {4;0} \right)\).

Xét cung tròn có phương trình \(y = \sqrt {16 - {x^2}} \).
Phần diện tích gạch chéo \(S = 2 \cdot \int\limits_2^4 {\sqrt {16 - {x^2}} } {\rm{d}}x = \frac{{16\pi }}{3} - 4\sqrt 3 \) (m2).
Phần diện tích màu xám: \(2 \cdot \left( {\frac{1}{4}\pi \cdot {4^2} - \frac{{16\pi }}{3} + 4\sqrt 3 } \right) = \frac{{ - 8\pi }}{3} + 8\sqrt 3 \) (m2).
Phần diện tích còn lại: \(16 - \left( {\frac{{16\pi }}{3} - 4\sqrt 3 + \frac{{ - 8\pi }}{3} + 8\sqrt 3 } \right) = 16 - \frac{{8\pi }}{3} - 4\sqrt 3 \) (m2).
Số tiền để sơn biển quảng cáo:
\[\left( {\frac{{16\pi }}{3} - 4\sqrt 3 } \right) \cdot 150{\rm{ 000 + }}\left( {\frac{{ - 8\pi }}{3} + 8\sqrt 3 } \right) \cdot 100{\rm{ 000}} + \left( {16 - \frac{{8\pi }}{3} - 4\sqrt 3 } \right) \cdot 250{\rm{ 000}}\, \approx 2\,195\,480\] đồng.
Câu 2
Lời giải
a) Sai. Ta có \(\overrightarrow {AB} = \left( {4; - 4;2} \right)\) nên đoạn thẳng \[AB\] có độ dài bằng \[\sqrt {{4^2} + {4^2} + {2^2}} = 6\].
b) Đúng. Vectơ \[\overrightarrow {AB} = \left( {4; - 4;2} \right) = 2\left( {2; - 2;1} \right)\] nên đường thẳng \[AB\] có phương trình \[\frac{{x - 1}}{2} = \frac{{y - 1}}{{ - 2}} = \frac{z}{1}\].
c) Sai. Vectơ \[\overrightarrow {AC} = \left( { - 1;3; - 1} \right)\] nên khoảng cách từ điểm \[C\] tới đường thẳng \[AB\] bằng
\(d\left( {C,AB} \right) = \frac{{\left| {\left[ {\overrightarrow {AC} ,\overrightarrow {AB} } \right]} \right|}}{{AB}} = \sqrt 2 \).
d) Đúng. Diện tích tam giác \[ABM\] bằng \[\frac{1}{2}AB \cdot d\left( {M,AB} \right) = 6\sqrt 2 \Leftrightarrow d\left( {M,AB} \right) = 2\sqrt 2 \]. Suy ra \(M\) thuộc mặt trụ có trục là đường thẳng \(AB\), bán kính \(R = 2\sqrt 2 \).

Đoạn thẳng \[MC\] có độ dài nhỏ nhất bằng \[M{C_{\min }} = \left| {d\left( {M,AB} \right) - d\left( {C,AB} \right)} \right| = \sqrt 2 \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

