Có 5 bạn học sinh nam và 5 bạn học sinh nữ, trong đó có một bạn nữ tên Tự và một bạn nam tên Trọng. Xếp ngẫu nhiên 10 bạn vào một dãy ghế sao cho mỗi ghế có đúng một người ngồi. Tính xác suất để không có hai học sinh nam nào ngồi kề nhau và bạn Tự ngồi kề với bạn Trọng.
Có 5 bạn học sinh nam và 5 bạn học sinh nữ, trong đó có một bạn nữ tên Tự và một bạn nam tên Trọng. Xếp ngẫu nhiên 10 bạn vào một dãy ghế sao cho mỗi ghế có đúng một người ngồi. Tính xác suất để không có hai học sinh nam nào ngồi kề nhau và bạn Tự ngồi kề với bạn Trọng.
Câu hỏi trong đề: Đề ôn thi ĐGNL ĐHSP Hà Nội môn Toán có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Kí hiệu: Nam là và Nữ là . Ta có 2 trường hợp nam, nữ xen kẽ nhau và 4 trường hợp hai bạn nữ ngồi cạnh nhau.
Trường hợp 1: Nam, nữ ngồi xen kẽ nhau gồm:
Nam phía trước ![]()
Nữ phía trước ![]()
Trường hợp 2: Hai bạn nữ ngồi cạnh nhau: ![]()
Các bước xếp như sau:
B1: Xếp 5 bạn nam.
B2: Xếp cặp Tự - Trọng.
B3: Xếp các bạn nữ còn lại.
Khi đó, số kết quả xếp cho 2 trường hợp trên như sau:
Nam, nữ xen kẽ nhau có \(2 \cdot 9 \cdot 4!\, \cdot 4!\) cách.
Hai bạn nữ ngồi cạnh nhau có \(4 \cdot 8 \cdot 4!\, \cdot 4!\) cách.
Vậy xác suất cần tính là \(P = \frac{{2 \cdot 9 \cdot 4!\, \cdot 4!\, + \,4 \cdot 8 \cdot 4!\, \cdot 4!}}{{10!}} = \frac{{50 \cdot 4!\, \cdot 4!}}{{10!}} = \frac{1}{{126}}\).
Trả lời: \(\frac{1}{{126}}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(I\) là giao điểm của 2 cung tròn . Chọn gốc toạ độ \(A\left( {0;0} \right)\) và hệ trục tọa độ \(Axy\) như hình vẽ\( \Rightarrow B\left( {4;0} \right)\).

Xét cung tròn có phương trình \(y = \sqrt {16 - {x^2}} \).
Phần diện tích gạch chéo \(S = 2 \cdot \int\limits_2^4 {\sqrt {16 - {x^2}} } {\rm{d}}x = \frac{{16\pi }}{3} - 4\sqrt 3 \) (m2).
Phần diện tích màu xám: \(2 \cdot \left( {\frac{1}{4}\pi \cdot {4^2} - \frac{{16\pi }}{3} + 4\sqrt 3 } \right) = \frac{{ - 8\pi }}{3} + 8\sqrt 3 \) (m2).
Phần diện tích còn lại: \(16 - \left( {\frac{{16\pi }}{3} - 4\sqrt 3 + \frac{{ - 8\pi }}{3} + 8\sqrt 3 } \right) = 16 - \frac{{8\pi }}{3} - 4\sqrt 3 \) (m2).
Số tiền để sơn biển quảng cáo:
\[\left( {\frac{{16\pi }}{3} - 4\sqrt 3 } \right) \cdot 150{\rm{ 000 + }}\left( {\frac{{ - 8\pi }}{3} + 8\sqrt 3 } \right) \cdot 100{\rm{ 000}} + \left( {16 - \frac{{8\pi }}{3} - 4\sqrt 3 } \right) \cdot 250{\rm{ 000}}\, \approx 2\,195\,480\] đồng.
Câu 2
Lời giải
a) Sai. Ta có \(\overrightarrow {AB} = \left( {4; - 4;2} \right)\) nên đoạn thẳng \[AB\] có độ dài bằng \[\sqrt {{4^2} + {4^2} + {2^2}} = 6\].
b) Đúng. Vectơ \[\overrightarrow {AB} = \left( {4; - 4;2} \right) = 2\left( {2; - 2;1} \right)\] nên đường thẳng \[AB\] có phương trình \[\frac{{x - 1}}{2} = \frac{{y - 1}}{{ - 2}} = \frac{z}{1}\].
c) Sai. Vectơ \[\overrightarrow {AC} = \left( { - 1;3; - 1} \right)\] nên khoảng cách từ điểm \[C\] tới đường thẳng \[AB\] bằng
\(d\left( {C,AB} \right) = \frac{{\left| {\left[ {\overrightarrow {AC} ,\overrightarrow {AB} } \right]} \right|}}{{AB}} = \sqrt 2 \).
d) Đúng. Diện tích tam giác \[ABM\] bằng \[\frac{1}{2}AB \cdot d\left( {M,AB} \right) = 6\sqrt 2 \Leftrightarrow d\left( {M,AB} \right) = 2\sqrt 2 \]. Suy ra \(M\) thuộc mặt trụ có trục là đường thẳng \(AB\), bán kính \(R = 2\sqrt 2 \).

Đoạn thẳng \[MC\] có độ dài nhỏ nhất bằng \[M{C_{\min }} = \left| {d\left( {M,AB} \right) - d\left( {C,AB} \right)} \right| = \sqrt 2 \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

