Câu hỏi:

23/01/2026 52 Lưu

Có 5 bạn học sinh nam và 5 bạn học sinh nữ, trong đó có một bạn nữ tên Tự và một bạn nam tên Trọng. Xếp ngẫu nhiên 10 bạn vào một dãy ghế sao cho mỗi ghế có đúng một người ngồi. Tính xác suất để không có hai học sinh nam nào ngồi kề nhau và bạn Tự ngồi kề với bạn Trọng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1/126

Kí hiệu: Nam là  và Nữ là . Ta có 2 trường hợp nam, nữ xen kẽ nhau và 4 trường hợp hai bạn nữ ngồi cạnh nhau.

Trường hợp 1: Nam, nữ ngồi xen kẽ nhau gồm:

Nam phía trước Có 5 bạn học sinh nam và 5 bạn học sinh nữ, trong đó có một bạn nữ tên Tự và một bạn nam tên Trọng. Xếp ngẫu nhiên 10 bạn vào một dãy ghế sao cho mỗi ghế có đúng một người ngồi. (ảnh 1)

Nữ phía trước Có 5 bạn học sinh nam và 5 bạn học sinh nữ, trong đó có một bạn nữ tên Tự và một bạn nam tên Trọng. Xếp ngẫu nhiên 10 bạn vào một dãy ghế sao cho mỗi ghế có đúng một người ngồi. (ảnh 2)

Trường hợp 2: Hai bạn nữ ngồi cạnh nhau:  Có 5 bạn học sinh nam và 5 bạn học sinh nữ, trong đó có một bạn nữ tên Tự và một bạn nam tên Trọng. Xếp ngẫu nhiên 10 bạn vào một dãy ghế sao cho mỗi ghế có đúng một người ngồi. (ảnh 3)

Các bước xếp như sau:

B1: Xếp 5 bạn nam.

B2: Xếp cặp Tự - Trọng.

B3: Xếp các bạn nữ còn lại.

Khi đó, số kết quả xếp cho 2 trường hợp trên như sau:

Nam, nữ xen kẽ nhau có \(2 \cdot 9 \cdot 4!\, \cdot 4!\) cách.

Hai bạn nữ ngồi cạnh nhau có \(4 \cdot 8 \cdot 4!\, \cdot 4!\) cách.

Vậy xác suất cần tính là \(P = \frac{{2 \cdot 9 \cdot 4!\, \cdot 4!\, + \,4 \cdot 8 \cdot 4!\, \cdot 4!}}{{10!}} = \frac{{50 \cdot 4!\, \cdot 4!}}{{10!}} = \frac{1}{{126}}\).

Trả lời: \(\frac{1}{{126}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(I\) là giao điểm của 2 cung tròn . Chọn gốc toạ độ \(A\left( {0;0} \right)\) và hệ trục tọa độ \(Axy\) như hình vẽ\( \Rightarrow B\left( {4;0} \right)\).

Một biển quảng cáo có dạng hình vuông \(ABCD\) cạ (ảnh 2)

Xét cung tròn có phương trình \(y = \sqrt {16 - {x^2}} \).

Phần diện tích gạch chéo \(S = 2 \cdot \int\limits_2^4 {\sqrt {16 - {x^2}} } {\rm{d}}x = \frac{{16\pi }}{3} - 4\sqrt 3 \) (m2).

Phần diện tích màu xám: \(2 \cdot \left( {\frac{1}{4}\pi \cdot {4^2} - \frac{{16\pi }}{3} + 4\sqrt 3 } \right) = \frac{{ - 8\pi }}{3} + 8\sqrt 3 \) (m2).

Phần diện tích còn lại: \(16 - \left( {\frac{{16\pi }}{3} - 4\sqrt 3 + \frac{{ - 8\pi }}{3} + 8\sqrt 3 } \right) = 16 - \frac{{8\pi }}{3} - 4\sqrt 3 \) (m2).

Số tiền để sơn biển quảng cáo:

\[\left( {\frac{{16\pi }}{3} - 4\sqrt 3 } \right) \cdot 150{\rm{ 000 + }}\left( {\frac{{ - 8\pi }}{3} + 8\sqrt 3 } \right) \cdot 100{\rm{ 000}} + \left( {16 - \frac{{8\pi }}{3} - 4\sqrt 3 } \right) \cdot 250{\rm{ 000}}\, \approx 2\,195\,480\] đồng.

Câu 2

a) Đoạn thẳng \[AB\] có độ dài bằng \[3\].
Đúng
Sai
b) Đường thẳng \[AB\] có phương trình là \[\frac{{x - 1}}{2} = \frac{{y - 1}}{{ - 2}} = \frac{z}{1}\].
Đúng
Sai
c) Khoảng cách từ điểm \[C\] tới đường thẳng \[AB\] bằng \[2\sqrt 2 \].
Đúng
Sai
d) Đoạn thẳng \[MC\] có độ dài nhỏ nhất bằng \[\sqrt 2 \].
Đúng
Sai

Lời giải

a) Sai. Ta có \(\overrightarrow {AB} = \left( {4; - 4;2} \right)\) nên đoạn thẳng \[AB\] có độ dài bằng \[\sqrt {{4^2} + {4^2} + {2^2}} = 6\].

b) Đúng. Vectơ \[\overrightarrow {AB} = \left( {4; - 4;2} \right) = 2\left( {2; - 2;1} \right)\] nên đường thẳng \[AB\] có phương trình \[\frac{{x - 1}}{2} = \frac{{y - 1}}{{ - 2}} = \frac{z}{1}\].

c) Sai. Vectơ \[\overrightarrow {AC} = \left( { - 1;3; - 1} \right)\] nên khoảng cách từ điểm \[C\] tới đường thẳng \[AB\] bằng

\(d\left( {C,AB} \right) = \frac{{\left| {\left[ {\overrightarrow {AC} ,\overrightarrow {AB} } \right]} \right|}}{{AB}} = \sqrt 2 \).

d) Đúng. Diện tích tam giác \[ABM\] bằng \[\frac{1}{2}AB \cdot d\left( {M,AB} \right) = 6\sqrt 2 \Leftrightarrow d\left( {M,AB} \right) = 2\sqrt 2 \]. Suy ra \(M\) thuộc mặt trụ có trục là đường thẳng \(AB\), bán kính \(R = 2\sqrt 2 \).

a) Đúng. Đạo hàm của hàm số đã cho là (ảnh 1)

Đoạn thẳng \[MC\] có độ dài nhỏ nhất bằng \[M{C_{\min }} = \left| {d\left( {M,AB} \right) - d\left( {C,AB} \right)} \right| = \sqrt 2 \].

Câu 5

a) Đạo hàm của hàm số đã cho là \(f'\left( x \right) = \left( {{x^2} + 2x} \right){{\rm{e}}^x}\).
Đúng
Sai
b) Nghiệm của phương trình \(f'\left( x \right) = 0\)\(x = 0\)\(x = 2.\)
Đúng
Sai
c) Hàm số đồng biến trên khoảng \(\left( {0;\, + \infty } \right)\).
Đúng
Sai
d) Giá trị nhỏ nhất của hàm số trên đoạn \(\left[ { - 1;1} \right]\) bằng \(\frac{1}{{\rm{e}}}.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(y = x - 2\).        
B. \(y = 2x + 2\).     
C. \(y = 2x - 2\).                              
D. \(y = x + 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP