Câu hỏi:

23/01/2026 85 Lưu

Có 2 bình, mỗi bình đựng 6 viên bi trắng và 5 viên bi đen. Lần lượt lấy ngẫu nhiên ra 1 viên bi từ bình thứ nhất và 1 viên bi từ bình thứ 2. Tính xác suất để lấy được viên bi thứ nhất màu trắng và viên bi thứ hai màu đen?

A. \(\frac{1}{{35}}\). 

B. \(\frac{{23}}{{22}}\). 
C. \[\frac{{30}}{{121}}\].                              
D. \(\frac{{35}}{{144}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A là biến cố: “Lần thứ nhất lấy được bi màu trắng”.

Gọi B là biến cố: “Lần thứ hai lấy được bi màu đen”.

AB là biến cố: “Lần thứ nhất lấy được viên bi màu trắng và lần thứ hai lấy được viên bi màu đen”. Ta thấy 2 biến cố AB độc lập với nhau.

Xác suất để lần thứ nhất lấy được bi màu trắng là: \[P\left( A \right) = \frac{6}{{11}}\].

Xác suất để lần thứ hai lấy được bi màu đen là \[P\left( B \right) = \frac{5}{{11}}\].

Áp dụng quy tắc nhân xác suất; xác suất cần tìm là:

\[P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right) = \frac{6}{{11}} \cdot \frac{5}{{11}} = \frac{{30}}{{121}}\]. Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(2 \cdot {5^{x + 2}} (ảnh 1)

\(A'M \cap \left( {AB'C} \right) = B'\).

Suy ra \(d\left( {M,\left( {AB'C} \right)} \right) = \frac{{MB'}}{{A'B'}} \cdot d\left( {A',\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {A',\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {B,\left( {AB'C} \right)} \right)\).

Từ \(B\) kẻ \(BN \bot AC\) tại \(N\), kẻ \(BH \bot B'N\) tại \(H\) thì \(d\left( {B,\left( {AB'C} \right)} \right) = BH\).

Tam giác \(ABC\) đều cạnh \(a\) nên \(BN = \frac{{a\sqrt 3 }}{2}\).

Tam giác \(B'BN\) vuông tại \(B\) nên \(BH = \frac{{BB' \cdot BN}}{{\sqrt {B{{B'}^2} + B{N^2}} }} = \frac{{2\sqrt {57} a}}{{19}}\).

Vậy \(d\left( {M,\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {B,\left( {AB'C} \right)} \right) = \frac{2}{3}BH = \frac{2}{3} \cdot \frac{{2\sqrt {57} a}}{{19}} = \frac{{4\sqrt {57} a}}{{57}}\).

Câu 2

A. \(\frac{{3375}}{{98}}\)\(\left( {\rm{m}} \right)\).    
B. \(\frac{{3223}}{{98}}\)\(\left( {\rm{m}} \right)\).                     
C. \(\frac{{3225}}{{98}}\)\(\left( {\rm{m}} \right)\).   
D. \(\frac{{125}}{{49}}\)\(\left( {\rm{m}} \right)\).

Lời giải

Gọi \(h\left( t \right)\) là độ cao của viên đạn bắn lên từ mặt đất sau \(t\) giây kể từ thời điểm đạn được bắn lên.

Khi đó \(h\left( t \right) = \int {v\left( t \right)} \,{\rm{dt}} = \int {\left( {25 - 9,8t} \right)} \,{\rm{dt}} = 25t - 4,9{t^2} + C\,\,\left( {\rm{m}} \right)\).

Do \[h\left( 0 \right) = 1\] nên \(C = 1\) \( \Rightarrow h\left( t \right) = - 4,9{t^2} + 25t + 1\,\,\left( {\rm{m}} \right)\).

Vậy viên đạn đạt độ cao lớn nhất là \(h = - \frac{\Delta }{{4a}} = \frac{{3223}}{{98}}\,\,\left( {\rm{m}} \right)\) khi \(t = - \frac{b}{{2a}} = \frac{{125}}{{49}}\) giây. Chọn B.

Câu 4

a) Hàm số \[f\left( x \right)\] nghịch biến trên khoảng \[\left( { - 1;1} \right)\].
Đúng
Sai
b) Trên đoạn \[\left[ { - 2;2} \right]\], hàm số \[f\left( x \right)\] đạt giá trị lớn nhất bằng 2.
Đúng
Sai
c) Hàm số \[f\left( x \right)\] có hai điểm cực trị.
Đúng
Sai
d) \[f\left( x \right) = {x^3} - 3x + 1\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP