Câu hỏi:

23/01/2026 25 Lưu

Trong không gian \(Oxyz,\) cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{z}{{ - 3}}.\) Mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1\,;0\,;1} \right)\) và vuông góc với đường thẳng \(d\) có phương trình là:   

A. \(2x + y - 3z + 1 = 0\).                       
B. \(2x + y - 3z - 1 = 0\).                 
C. \(x + z + 1 = 0\). 
D. \(x + z - 1 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng \(d\) có một vectơ chỉ phương là: \({\vec u_d} = \left( {2;1; - 3} \right)\).

Mặt phẳng \(\left( P \right)\) vuông góc với đường thẳng \(d\) nên \(\left( P \right)\) nhân \({\vec u_d}\) làm vectơ pháp tuyến.

Mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1\,;0\,;1} \right)\).

Phương trình mặt phẳng \(\left( P \right)\) là: \[2\left( {x - 1} \right) + 1\left( {y - 0} \right) - 3\left( {z - 1} \right) = 0 \Leftrightarrow 2x + y - 3z + 1 = 0\]. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(2 \cdot {5^{x + 2}} (ảnh 1)

\(A'M \cap \left( {AB'C} \right) = B'\).

Suy ra \(d\left( {M,\left( {AB'C} \right)} \right) = \frac{{MB'}}{{A'B'}} \cdot d\left( {A',\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {A',\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {B,\left( {AB'C} \right)} \right)\).

Từ \(B\) kẻ \(BN \bot AC\) tại \(N\), kẻ \(BH \bot B'N\) tại \(H\) thì \(d\left( {B,\left( {AB'C} \right)} \right) = BH\).

Tam giác \(ABC\) đều cạnh \(a\) nên \(BN = \frac{{a\sqrt 3 }}{2}\).

Tam giác \(B'BN\) vuông tại \(B\) nên \(BH = \frac{{BB' \cdot BN}}{{\sqrt {B{{B'}^2} + B{N^2}} }} = \frac{{2\sqrt {57} a}}{{19}}\).

Vậy \(d\left( {M,\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {B,\left( {AB'C} \right)} \right) = \frac{2}{3}BH = \frac{2}{3} \cdot \frac{{2\sqrt {57} a}}{{19}} = \frac{{4\sqrt {57} a}}{{57}}\).

Câu 2

A. \(\frac{{3375}}{{98}}\)\(\left( {\rm{m}} \right)\).    
B. \(\frac{{3223}}{{98}}\)\(\left( {\rm{m}} \right)\).                     
C. \(\frac{{3225}}{{98}}\)\(\left( {\rm{m}} \right)\).   
D. \(\frac{{125}}{{49}}\)\(\left( {\rm{m}} \right)\).

Lời giải

Gọi \(h\left( t \right)\) là độ cao của viên đạn bắn lên từ mặt đất sau \(t\) giây kể từ thời điểm đạn được bắn lên.

Khi đó \(h\left( t \right) = \int {v\left( t \right)} \,{\rm{dt}} = \int {\left( {25 - 9,8t} \right)} \,{\rm{dt}} = 25t - 4,9{t^2} + C\,\,\left( {\rm{m}} \right)\).

Do \[h\left( 0 \right) = 1\] nên \(C = 1\) \( \Rightarrow h\left( t \right) = - 4,9{t^2} + 25t + 1\,\,\left( {\rm{m}} \right)\).

Vậy viên đạn đạt độ cao lớn nhất là \(h = - \frac{\Delta }{{4a}} = \frac{{3223}}{{98}}\,\,\left( {\rm{m}} \right)\) khi \(t = - \frac{b}{{2a}} = \frac{{125}}{{49}}\) giây. Chọn B.

Câu 4

a) Hàm số \[f\left( x \right)\] nghịch biến trên khoảng \[\left( { - 1;1} \right)\].
Đúng
Sai
b) Trên đoạn \[\left[ { - 2;2} \right]\], hàm số \[f\left( x \right)\] đạt giá trị lớn nhất bằng 2.
Đúng
Sai
c) Hàm số \[f\left( x \right)\] có hai điểm cực trị.
Đúng
Sai
d) \[f\left( x \right) = {x^3} - 3x + 1\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP