Câu hỏi:

23/01/2026 62 Lưu

Phần III (1 điểm). Thí sinh trả lời từ câu 1 đến câu 4. Đối với mỗi câu, thí sinh chỉ viết kết quả, không trình bày suy luận. Đối với mỗi câu trả lời đúng, thí sinh được 0,25 điểm.

Nhà máy \(A\) chuyên sản xuất một loại sản phẩm cung cấp cho nhà máy \(B\). Hai nhà máy thoả thuận, mỗi tháng \(A\) cung cấp cho \(B\) số lượng sản phẩm theo đơn đặt hàng của \(B\) (tối đa \(100\) tấn sản phẩm). Nếu số lượng đặt hàng là \(x\) tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là \(P\left( x \right) = 45 - 0,001{x^2}\) (triệu đồng). Chi phí để \(A\) sản xuất \(x\) tấn sản phẩm trong một tháng là \(C\left( x \right) = 100 + 30x\) (triệu đồng) (gồm \(100\) triệu đồng chi phí cố định và \(30\) triệu đồng cho mỗi tấn sản phẩm). Để mỗi tháng thu được lợi nhuận lớn nhất thì \(A\) cần bán cho \(B\) khoảng bao nhiêu tấn sản phẩm?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

50 căn 2

Số tiền mà \(A\) thu được (gọi là doanh thu) từ việc bán \(x\) tấn sản phẩm \(\left( {0 \le x \le 100} \right)\) cho \(B\)

\(R\left( x \right) = x \cdot P\left( x \right) = x\left( {45 - 0,001{x^2}} \right) = 45x - 0,001{x^3}\) (triệu đồng).

Lợi nhuận (triệu đồng) mà \(A\) thu được là

\(P\left( x \right) = R\left( x \right) - C\left( x \right) = x\left( {45 - 0,001{x^2}} \right) - \left( {100 + 30x} \right) = - 0,001{x^3} + 15x - 100\).

Xét hàm số \(P\left( x \right) = - 0,001{x^3} + 15x - 100\) với \(0 \le x \le 100\), ta có \(P'\left( x \right) = - 0,003{x^2} + 15;\)

\(P'\left( x \right) = 0 \Leftrightarrow - 0,003{x^2} + 15 = 0 \Leftrightarrow {x^2} = 5{\kern 1pt} 000 \Leftrightarrow x = 50\sqrt 2 \in \left[ {0\,;100} \right]\).

Ta có \(P\left( 0 \right) = - 100\); \(P\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\); \(P\left( {100} \right) = 400\).

Bảng biến thiên:

Nhà máy \(A\) chuyên sản xuất một loại sản (ảnh 1)

Từ bảng biến thiên, ta có \(\mathop {\max }\limits_{\left[ {0;100} \right]} P = P\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\).

Vậy \(A\) thu được lợi nhuận lớn nhất khi bán \(50\sqrt 2 \) tấn sản phẩm cho \(B\) mỗi tháng.

Trả lời: \(50\sqrt 2 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(2 \cdot {5^{x + 2}} (ảnh 1)

\(A'M \cap \left( {AB'C} \right) = B'\).

Suy ra \(d\left( {M,\left( {AB'C} \right)} \right) = \frac{{MB'}}{{A'B'}} \cdot d\left( {A',\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {A',\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {B,\left( {AB'C} \right)} \right)\).

Từ \(B\) kẻ \(BN \bot AC\) tại \(N\), kẻ \(BH \bot B'N\) tại \(H\) thì \(d\left( {B,\left( {AB'C} \right)} \right) = BH\).

Tam giác \(ABC\) đều cạnh \(a\) nên \(BN = \frac{{a\sqrt 3 }}{2}\).

Tam giác \(B'BN\) vuông tại \(B\) nên \(BH = \frac{{BB' \cdot BN}}{{\sqrt {B{{B'}^2} + B{N^2}} }} = \frac{{2\sqrt {57} a}}{{19}}\).

Vậy \(d\left( {M,\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {B,\left( {AB'C} \right)} \right) = \frac{2}{3}BH = \frac{2}{3} \cdot \frac{{2\sqrt {57} a}}{{19}} = \frac{{4\sqrt {57} a}}{{57}}\).

Câu 2

A. \(\frac{{3375}}{{98}}\)\(\left( {\rm{m}} \right)\).    
B. \(\frac{{3223}}{{98}}\)\(\left( {\rm{m}} \right)\).                     
C. \(\frac{{3225}}{{98}}\)\(\left( {\rm{m}} \right)\).   
D. \(\frac{{125}}{{49}}\)\(\left( {\rm{m}} \right)\).

Lời giải

Gọi \(h\left( t \right)\) là độ cao của viên đạn bắn lên từ mặt đất sau \(t\) giây kể từ thời điểm đạn được bắn lên.

Khi đó \(h\left( t \right) = \int {v\left( t \right)} \,{\rm{dt}} = \int {\left( {25 - 9,8t} \right)} \,{\rm{dt}} = 25t - 4,9{t^2} + C\,\,\left( {\rm{m}} \right)\).

Do \[h\left( 0 \right) = 1\] nên \(C = 1\) \( \Rightarrow h\left( t \right) = - 4,9{t^2} + 25t + 1\,\,\left( {\rm{m}} \right)\).

Vậy viên đạn đạt độ cao lớn nhất là \(h = - \frac{\Delta }{{4a}} = \frac{{3223}}{{98}}\,\,\left( {\rm{m}} \right)\) khi \(t = - \frac{b}{{2a}} = \frac{{125}}{{49}}\) giây. Chọn B.

Câu 4

a) Hàm số \[f\left( x \right)\] nghịch biến trên khoảng \[\left( { - 1;1} \right)\].
Đúng
Sai
b) Trên đoạn \[\left[ { - 2;2} \right]\], hàm số \[f\left( x \right)\] đạt giá trị lớn nhất bằng 2.
Đúng
Sai
c) Hàm số \[f\left( x \right)\] có hai điểm cực trị.
Đúng
Sai
d) \[f\left( x \right) = {x^3} - 3x + 1\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP