Phần III (1 điểm). Thí sinh trả lời từ câu 1 đến câu 4. Đối với mỗi câu, thí sinh chỉ viết kết quả, không trình bày suy luận. Đối với mỗi câu trả lời đúng, thí sinh được 0,25 điểm.
Nhà máy \(A\) chuyên sản xuất một loại sản phẩm cung cấp cho nhà máy \(B\). Hai nhà máy thoả thuận, mỗi tháng \(A\) cung cấp cho \(B\) số lượng sản phẩm theo đơn đặt hàng của \(B\) (tối đa \(100\) tấn sản phẩm). Nếu số lượng đặt hàng là \(x\) tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là \(P\left( x \right) = 45 - 0,001{x^2}\) (triệu đồng). Chi phí để \(A\) sản xuất \(x\) tấn sản phẩm trong một tháng là \(C\left( x \right) = 100 + 30x\) (triệu đồng) (gồm \(100\) triệu đồng chi phí cố định và \(30\) triệu đồng cho mỗi tấn sản phẩm). Để mỗi tháng thu được lợi nhuận lớn nhất thì \(A\) cần bán cho \(B\) khoảng bao nhiêu tấn sản phẩm?
Phần III (1 điểm). Thí sinh trả lời từ câu 1 đến câu 4. Đối với mỗi câu, thí sinh chỉ viết kết quả, không trình bày suy luận. Đối với mỗi câu trả lời đúng, thí sinh được 0,25 điểm.
Nhà máy \(A\) chuyên sản xuất một loại sản phẩm cung cấp cho nhà máy \(B\). Hai nhà máy thoả thuận, mỗi tháng \(A\) cung cấp cho \(B\) số lượng sản phẩm theo đơn đặt hàng của \(B\) (tối đa \(100\) tấn sản phẩm). Nếu số lượng đặt hàng là \(x\) tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là \(P\left( x \right) = 45 - 0,001{x^2}\) (triệu đồng). Chi phí để \(A\) sản xuất \(x\) tấn sản phẩm trong một tháng là \(C\left( x \right) = 100 + 30x\) (triệu đồng) (gồm \(100\) triệu đồng chi phí cố định và \(30\) triệu đồng cho mỗi tấn sản phẩm). Để mỗi tháng thu được lợi nhuận lớn nhất thì \(A\) cần bán cho \(B\) khoảng bao nhiêu tấn sản phẩm?
Câu hỏi trong đề: Đề ôn thi ĐGNL ĐHSP Hà Nội môn Toán có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Số tiền mà \(A\) thu được (gọi là doanh thu) từ việc bán \(x\) tấn sản phẩm \(\left( {0 \le x \le 100} \right)\) cho \(B\) là
\(R\left( x \right) = x \cdot P\left( x \right) = x\left( {45 - 0,001{x^2}} \right) = 45x - 0,001{x^3}\) (triệu đồng).
Lợi nhuận (triệu đồng) mà \(A\) thu được là
\(P\left( x \right) = R\left( x \right) - C\left( x \right) = x\left( {45 - 0,001{x^2}} \right) - \left( {100 + 30x} \right) = - 0,001{x^3} + 15x - 100\).
Xét hàm số \(P\left( x \right) = - 0,001{x^3} + 15x - 100\) với \(0 \le x \le 100\), ta có \(P'\left( x \right) = - 0,003{x^2} + 15;\)
\(P'\left( x \right) = 0 \Leftrightarrow - 0,003{x^2} + 15 = 0 \Leftrightarrow {x^2} = 5{\kern 1pt} 000 \Leftrightarrow x = 50\sqrt 2 \in \left[ {0\,;100} \right]\).
Ta có \(P\left( 0 \right) = - 100\); \(P\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\); \(P\left( {100} \right) = 400\).
Bảng biến thiên:

Từ bảng biến thiên, ta có \(\mathop {\max }\limits_{\left[ {0;100} \right]} P = P\left( {50\sqrt 2 } \right) = 500\sqrt 2 - 100\).
Vậy \(A\) thu được lợi nhuận lớn nhất khi bán \(50\sqrt 2 \) tấn sản phẩm cho \(B\) mỗi tháng.
Trả lời: \(50\sqrt 2 \).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì \(A'M \cap \left( {AB'C} \right) = B'\).
Suy ra \(d\left( {M,\left( {AB'C} \right)} \right) = \frac{{MB'}}{{A'B'}} \cdot d\left( {A',\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {A',\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {B,\left( {AB'C} \right)} \right)\).
Từ \(B\) kẻ \(BN \bot AC\) tại \(N\), kẻ \(BH \bot B'N\) tại \(H\) thì \(d\left( {B,\left( {AB'C} \right)} \right) = BH\).
Tam giác \(ABC\) đều cạnh \(a\) nên \(BN = \frac{{a\sqrt 3 }}{2}\).
Tam giác \(B'BN\) vuông tại \(B\) nên \(BH = \frac{{BB' \cdot BN}}{{\sqrt {B{{B'}^2} + B{N^2}} }} = \frac{{2\sqrt {57} a}}{{19}}\).
Vậy \(d\left( {M,\left( {AB'C} \right)} \right) = \frac{2}{3} \cdot d\left( {B,\left( {AB'C} \right)} \right) = \frac{2}{3}BH = \frac{2}{3} \cdot \frac{{2\sqrt {57} a}}{{19}} = \frac{{4\sqrt {57} a}}{{57}}\).
Câu 2
Lời giải
Gọi \(h\left( t \right)\) là độ cao của viên đạn bắn lên từ mặt đất sau \(t\) giây kể từ thời điểm đạn được bắn lên.
Khi đó \(h\left( t \right) = \int {v\left( t \right)} \,{\rm{dt}} = \int {\left( {25 - 9,8t} \right)} \,{\rm{dt}} = 25t - 4,9{t^2} + C\,\,\left( {\rm{m}} \right)\).
Do \[h\left( 0 \right) = 1\] nên \(C = 1\) \( \Rightarrow h\left( t \right) = - 4,9{t^2} + 25t + 1\,\,\left( {\rm{m}} \right)\).
Vậy viên đạn đạt độ cao lớn nhất là \(h = - \frac{\Delta }{{4a}} = \frac{{3223}}{{98}}\,\,\left( {\rm{m}} \right)\) khi \(t = - \frac{b}{{2a}} = \frac{{125}}{{49}}\) giây. Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{1}{{35}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

