Câu hỏi:

23/01/2026 35 Lưu

Cho \(X\)\(Y\) là hai biến cố độc lập. Biết xác suất của biến cố \(X\)\(0,3\) và xác suất của biến cố \(Y\) \(0,5\). Khi đó xác suất của biến cố \(X \cup Y\) bằng    

A. \(0,4\).                
B. \(0,65\).              
C. \(0,8\).                         
D. \(0,85\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xác suất của biến cố \(X \cup Y\) là: \(P\left( {X \cup Y} \right) = P\left( X \right) + P\left( Y \right) - P\left( {XY} \right)\).

Do \(X\)\(Y\) là hai biến cố độc lập nên \(P\left( {XY} \right) = P\left( X \right) \cdot P\left( Y \right)\).

Vậy \(P\left( {X \cup Y} \right) = P\left( X \right) + P\left( Y \right) - P\left( X \right) \cdot P\left( Y \right)\)\( = 0,3 + 0,5 - 0,3 \cdot 0,5 = 0,65\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hàm số trên luôn đồng biến trên tập xác định.
Đúng
Sai
b) \(f\left( 1 \right) = - 2;\,f\left( {{e^2}} \right) = 2 - 2{e^4}.\)
Đúng
Sai
c) Hàm số \(y = f\left( x \right)\) có hai điểm cực trị.
Đúng
Sai
d) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {1;{e^2}} \right]\)\( - \frac{5}{2} - \ln 2.\)
Đúng
Sai

Lời giải

a) Sai. Ta có \(y' = f'\left( x \right) = {\left( {\ln x - 2{x^2}} \right)^\prime } = \frac{1}{x} - 4x \ge 0\) khi \(x \in \left( {0;\frac{1}{2}} \right]\).

Do đó hàm số đồng biến trên khoảng \(\left( {0;\frac{1}{2}} \right)\).

b) Đúng. Ta có \(f\left( 1 \right) = \ln 1 - 2 \cdot {1^2} = - 2\); \(f\left( {{e^2}} \right) = \ln {e^2} - 2 \cdot {\left( {{e^2}} \right)^2} = 2 - 2 \cdot {e^4}\).

c) Sai. Ta có . Vậy hàm số có một điểm cực trị.

d) Sai. Ta có \(f\left( 1 \right) = - 2;\,f\left( {{e^2}} \right) = 2 - 2{e^4}\). Vậy \(\left\{ \begin{array}{l}\mathop {\min }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = 2 - 2{e^4}\\\mathop {\max }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = - 2\end{array} \right.\).

Nên \(\mathop {\min }\limits_{\left[ {1\,;{e^2}} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = - 2{e^4}\).

Câu 2

A. \(1\).                   
B. \(\frac{2}{3}\).   
C. \(\frac{1}{2}\).           
D. \(\frac{4}{3}\).

Lời giải

Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 2x,\,y = - 2{x^2} + 2x\] và hai đường thẳng \[x = 0,\,x = 1\]\[\int\limits_0^1 {\left| {\left( {{x^2} - 2x} \right) - \left( { - 2{x^2} + 2x} \right)} \right|} \,{\rm{d}}x = 1\]. Chọn A.

Câu 4

A. \(F\left( 3 \right) = {\rm{ln}}3 + 1\).                              
B. \(F\left( 3 \right) = \frac{1}{2}{\rm{ln}}3 - 1\).                      
C. \(F\left( 3 \right) = \frac{1}{2}{\rm{ln}}3 + 1\).      
D. \(F\left( 3 \right) = 2{\rm{ln}}3 + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP