Câu hỏi:

23/01/2026 99 Lưu

Một phân xưởng sản xuất bóng đèn có tỉ lệ bóng đạt chuẩn là \(95{\rm{\% }}\). Để hạn chế số lượng bóng không đạt chuẩn được bán ra thị trường, người ta lắp đặt một thiết bị kiểm tra chất lượng tự động S. Nếu một bóng đèn không đạt chuẩn, thiết bị S sẽ loại bỏ nó với xác suất 0,99. Khi kiểm tra lại các bóng đèn bị loại, người ta nhận thấy có \(10{\rm{\% }}\) số đó là bóng đạt chuẩn. Chọn ngẫu nhiên 1 bóng đèn do phân xưởng đó sản xuất. Tính xác suất bóng đèn được chọn đạt chuẩn biết rằng nó không bị thiết bị S loại bỏ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

1889/1890

Chọn ngẫu nhiên 1 bóng đèn do phân xưởng sản xuất.

Gọi C là biến cố: “bóng đèn đó đạt chuẩn” và L là biến cố: “bóng đèn đó bị thiết bị S loại”.

Theo bài ra ta có \(P\left( C \right) = 0,95;P\left( {L|\overline C } \right) = 0,99;P\left( {C|L} \right) = 0,1\).

Suy ra \(P\left( L \right) = \frac{{P\left( {L\mid \overline C } \right)P\left( {\overline C } \right)}}{{P\left( {\overline C \mid L} \right)}} = \frac{{0,99 \cdot 0,05}}{{1 - 0,1}} = \frac{{11}}{{200}}\) \(P\left( {CL} \right) = P\left( {C|L} \right) \cdot P\left( L \right) = 0,1 \cdot \frac{{11}}{{200}} = \frac{{11}}{{2000}}\).

Xác suất bóng đèn được chọn đạt chuẩn biết rằng nó không bị thiết bị S loại là

\(P\left( {C|\overline L } \right) = \frac{{P\left( {C\overline L } \right)}}{{P\left( {\overline L } \right)}} = \frac{{P\left( C \right) - P\left( {CL} \right)}}{{1 - P\left( L \right)}} = \frac{{1889}}{{1890}}\).

Trả lời: \(\frac{{1889}}{{1890}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hàm số trên luôn đồng biến trên tập xác định.
Đúng
Sai
b) \(f\left( 1 \right) = - 2;\,f\left( {{e^2}} \right) = 2 - 2{e^4}.\)
Đúng
Sai
c) Hàm số \(y = f\left( x \right)\) có hai điểm cực trị.
Đúng
Sai
d) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {1;{e^2}} \right]\)\( - \frac{5}{2} - \ln 2.\)
Đúng
Sai

Lời giải

a) Sai. Ta có \(y' = f'\left( x \right) = {\left( {\ln x - 2{x^2}} \right)^\prime } = \frac{1}{x} - 4x \ge 0\) khi \(x \in \left( {0;\frac{1}{2}} \right]\).

Do đó hàm số đồng biến trên khoảng \(\left( {0;\frac{1}{2}} \right)\).

b) Đúng. Ta có \(f\left( 1 \right) = \ln 1 - 2 \cdot {1^2} = - 2\); \(f\left( {{e^2}} \right) = \ln {e^2} - 2 \cdot {\left( {{e^2}} \right)^2} = 2 - 2 \cdot {e^4}\).

c) Sai. Ta có . Vậy hàm số có một điểm cực trị.

d) Sai. Ta có \(f\left( 1 \right) = - 2;\,f\left( {{e^2}} \right) = 2 - 2{e^4}\). Vậy \(\left\{ \begin{array}{l}\mathop {\min }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = 2 - 2{e^4}\\\mathop {\max }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = - 2\end{array} \right.\).

Nên \(\mathop {\min }\limits_{\left[ {1\,;{e^2}} \right]} f\left( x \right) + \mathop {\max }\limits_{\left[ {1\,;\,{e^2}} \right]} f\left( x \right) = - 2{e^4}\).

Câu 2

A. \(1\).                   
B. \(\frac{2}{3}\).   
C. \(\frac{1}{2}\).           
D. \(\frac{4}{3}\).

Lời giải

Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 2x,\,y = - 2{x^2} + 2x\] và hai đường thẳng \[x = 0,\,x = 1\]\[\int\limits_0^1 {\left| {\left( {{x^2} - 2x} \right) - \left( { - 2{x^2} + 2x} \right)} \right|} \,{\rm{d}}x = 1\]. Chọn A.

Câu 4

A. 6.                        
B. \( - 6\).                
C. \( - 10\).                            
D. \( - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(F\left( 3 \right) = {\rm{ln}}3 + 1\).                              
B. \(F\left( 3 \right) = \frac{1}{2}{\rm{ln}}3 - 1\).                      
C. \(F\left( 3 \right) = \frac{1}{2}{\rm{ln}}3 + 1\).      
D. \(F\left( 3 \right) = 2{\rm{ln}}3 + 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP