Cho \(\widehat {xOy} = 70^\circ \). Trên tia \(Ox\) lấy điểm \(A\). Kẻ tia \(Az\) sao cho \(\widehat {xAz} = 70^\circ \) (Tia \(Az\) nằm trong \(\widehat {xOy}\)). Trên tia \(Az\) lấy điểm \(B\), kẻ tia \(Bt\) cắt \(Oy\) tại \(C\) sao cho \(\widehat {CBz} = 110^\circ \).
Khi đó:
Cho \(\widehat {xOy} = 70^\circ \). Trên tia \(Ox\) lấy điểm \(A\). Kẻ tia \(Az\) sao cho \(\widehat {xAz} = 70^\circ \) (Tia \(Az\) nằm trong \(\widehat {xOy}\)). Trên tia \(Az\) lấy điểm \(B\), kẻ tia \(Bt\) cắt \(Oy\) tại \(C\) sao cho \(\widehat {CBz} = 110^\circ \).

Khi đó:
a) \(\widehat {ABC}\) và \(\widehat {CBz}\) là hai góc kề bù.
b) \(\widehat {CBz} = 70^\circ \).
c) \(Oy\) song song với \(Az\).
Quảng cáo
Trả lời:
a) Đúng.
Nhận thấy \(\widehat {ABC}\) và \(\widehat {CBz}\) là hai góc kề bù nên ta có \(\widehat {CBz} + \widehat {ABC} = 180^\circ \). Do đó, ý a) đúng.
b) Đúng.
Suy ra \(\widehat {CBz} = 180^\circ - \widehat {CBA} = 180^\circ - 110^\circ = 70^\circ \). Do đó, ý b) đúng.
Ta có \(\widehat {xAz} = \widehat {xOy} = 70^\circ \).
c) Đúng.
Mà hai góc ở vị trí đồng vị nên \(Oy\parallel Az\). Do đó, ý c) đúng.
d) Sai.
Vì \(Oy\parallel Az\) nên \(\widehat {OCB} = \widehat {CBz} = 70^\circ \) (so le trong). Do đó, ý d) sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) \(\widehat {aAx'}\) và \(\widehat {ABC}\) là hai góc so le trong.
b) \(x'x\parallel yy'.\)
c) \(\widehat {BAx'} = 120^\circ .\)
Lời giải
a) Sai.
Nhận thấy, \(\widehat {aAx'}\) và \(\widehat {ABC}\) là hai góc đồng vị. Do đó, ý a) là sai.
b) Đúng.
Ta có: \(\widehat {aAx'} = \widehat {ABC} = 60^\circ \), đồng thời hai góc ở vị trí đồng vị nên \(x'x\parallel yy'.\) Do đó, ý b) là đúng.
c) Đúng.
Có \(\widehat {aAx'}\) và \(\widehat {BAx'}\) nên \(\widehat {aAx'} + \widehat {BAx'} = 180^\circ \), suy ra \(\widehat {BAx'} = 180^\circ - \widehat {aAx'} = 180^\circ - 60^\circ = 120^\circ \).
Do đó, ý c) là đúng.
d) Đúng.
Có tia \(AC\) là tia phân giác của \(\widehat {BAx'}\) nên \(\widehat {BAC} = \widehat {CAx'} = \frac{{\widehat {BAx'}}}{2} = 60^\circ \).
Ta có \(x'x\parallel yy'\) nên \(\widehat {BAx} = \widehat {ABC} = 60^\circ \) (so le trong).
Suy ra \(\widehat {BAx} = \widehat {BAC} = 60^\circ \).
Mà tia \(AB\) nằm trong \(\widehat {xAC}\) nên \(AB\) là tia phân giác của \(\widehat {xAC}\). Do đó, ý d) là đúng.
Câu 2
a) \(\widehat {DAB} = 65^\circ \).
b) \(\widehat {DAC}\) và \(\widehat {DAE}\) là hai góc kề bù.
c) \(AD\) là tia phân giác của \(\widehat {EAB}.\)
Lời giải
a) Đúng.
Vì \(Ax\parallel a\) nên \(\widehat {DAB} = \widehat {ABC} = 65^\circ \) (so le trong). Do đó, ý a) đúng.
b) Đúng.
Nhận thấy \(\widehat {DAC}\) và \(\widehat {DAE}\) là hai góc kề bù. Do đó, ý b) đúng.
c) Đúng.
Có \(\widehat {DAB}\) và \(\widehat {BAC}\) là hai góc kề nhau nên \(\widehat {DAB} + \widehat {BAC} = \widehat {DAC}\) hay \(\widehat {DAC} = 50^\circ + 65 = 115^\circ .\)
Vì \(\widehat {DAC}\) và \(\widehat {DAE}\) là hai góc kề bù nên \(\widehat {DAC} + \widehat {DAE} = 180^\circ \)
hay \(\widehat {DAE} = 180^\circ - \widehat {DAC} = 180^\circ - 115^\circ = 65^\circ \).
Suy ra \(\widehat {DAE} = \widehat {DAB} = 65^\circ \) và \(AD\) là tia nằm giữa hai tia \(AB,AE\).
Do đó, \(AD\) là tia phân giác của \(\widehat {EAB}.\)
Do đó, ý c) đúng.
d) Đúng.
Xét tam giác \(ABC,\) có: \(\widehat {ABC} + \widehat {ACB} + \widehat {BAC} = 180^\circ \) hay \(65^\circ + 50^\circ + \widehat {BCA} = 180^\circ \).
Suy ra \(\widehat {BCA} = 180^\circ - \left( {65^\circ + 50^\circ } \right) = 65^\circ \).
Do đó, \(\widehat {FAC} = \widehat {ACB} = 65^\circ \).
Mà hai góc ở vị trí so le trong.
Suy ra \(AF\parallel a\).
Mà \(AD\parallel a\) và qua một điểm chỉ kẻ được duy nhất một đường thẳng song song với đường thẳng đã cho.
Vậy \(A,D,F\) thẳng hàng.
Vậy ý d) là đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Qua một điểm ở ngoài một đường thẳng, chỉ có một đường thẳng song song với đường thẳng đó.
B. Qua một điểm ở ngoài một đường thẳng, có vô số đường thẳng song song với đường thẳng đó.
C. Qua một điểm ở ngoài một đường thẳng, không kẻ được đường thẳng song song với đường thẳng đó.
D. Qua một điểm ở ngoài một đường thẳng, kẻ được ít nhất một đường thẳng song song với đường thẳng đó.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) \(\widehat {xAC}\) và \(\widehat {BAC}\) là hai góc kề nhau.
b) \(\widehat {CAy} = 126^\circ \).
c) \(\widehat {yAB} = 72^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




