Câu hỏi:

27/01/2026 37 Lưu

Cho hình vẽ bên, biết \(\widehat {aAx'} = 60^\circ \), \(\widehat {ABC} = 60^\circ \) và tia \(AC\) là tia phân giác của \(\widehat {BAx'}.\)

Cho hình vẽ bên, biết (ảnh 1)

Khi đó:

a) \(\widehat {aAx'}\) và \(\widehat {ABC}\) là hai góc so le trong.

Đúng
Sai

b) \(x'x\parallel yy'.\)

Đúng
Sai

c) \(\widehat {BAx'} = 120^\circ .\)

Đúng
Sai
d) \(AB\) là tia phân giác của \(\widehat {xAC}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai.

Nhận thấy, \(\widehat {aAx'}\) và \(\widehat {ABC}\) là hai góc đồng vị. Do đó, ý a) là sai.

b) Đúng.

Ta có: \(\widehat {aAx'} = \widehat {ABC} = 60^\circ \), đồng thời hai góc ở vị trí đồng vị nên \(x'x\parallel yy'.\) Do đó, ý b) là đúng.

c) Đúng.

Có \(\widehat {aAx'}\) và \(\widehat {BAx'}\) nên \(\widehat {aAx'} + \widehat {BAx'} = 180^\circ \), suy ra \(\widehat {BAx'} = 180^\circ  - \widehat {aAx'} = 180^\circ  - 60^\circ  = 120^\circ \).

Do đó, ý c) là đúng.

d) Đúng.

Có tia \(AC\) là tia phân giác của \(\widehat {BAx'}\) nên \(\widehat {BAC} = \widehat {CAx'} = \frac{{\widehat {BAx'}}}{2} = 60^\circ \).

Ta có \(x'x\parallel yy'\) nên \(\widehat {BAx} = \widehat {ABC} = 60^\circ \) (so le trong).

Suy ra \(\widehat {BAx} = \widehat {BAC} = 60^\circ \).

Mà tia \(AB\) nằm trong \(\widehat {xAC}\) nên \(AB\) là tia phân giác của \(\widehat {xAC}\). Do đó, ý d) là đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat {aOc}.\)                                       
B. \(\widehat {cOd}.\)                      
C. \(\widehat {eOb}.\)           
D. \(\widehat {cOe}.\)

Lời giải

Đáp án đúng là: C

Góc kề bù với \(\widehat {aOb}\) là \(\widehat {eOb}.\)

Câu 2

a) \(\widehat {ABC}\) và \(\widehat {CBz}\) là hai góc kề bù.

Đúng
Sai

b) \(\widehat {CBz} = 70^\circ \).

Đúng
Sai

c) \(Oy\) song song với \(Az\).

Đúng
Sai
d) \(\widehat {BCO} = 110^\circ \).
Đúng
Sai

Lời giải

a) Đúng.

Nhận thấy \(\widehat {ABC}\) và \(\widehat {CBz}\) là hai góc kề bù nên ta có \(\widehat {CBz} + \widehat {ABC} = 180^\circ \). Do đó, ý a) đúng.

b) Đúng.

Suy ra \(\widehat {CBz} = 180^\circ  - \widehat {CBA} = 180^\circ  - 110^\circ  = 70^\circ \). Do đó, ý b) đúng.

Ta có \(\widehat {xAz} = \widehat {xOy} = 70^\circ \).

c) Đúng.

Mà hai góc ở vị trí đồng vị nên \(Oy\parallel Az\). Do đó, ý c) đúng.

d) Sai.

Vì \(Oy\parallel Az\) nên \(\widehat {OCB} = \widehat {CBz} = 70^\circ \) (so le trong). Do đó, ý d) sai.

Câu 3

A. \(a\parallel b\) vì hai góc đồng vị bằng nhau.                    

B. \(a\parallel b\) vì hai góc so le trong bằng nhau.

C. \(a\parallel c\) vì hai góc so le trong bằng nhau.    
D. \(c\parallel b\) vì hai góc so le trong bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\widehat {mEy}.\)                                                                            
B. \(\widehat {mEx}.\)                    
C. \(\widehat {nEy}.\)           
D. \(\widehat {mEx}\) và \(\widehat {nEy}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(\widehat {{A_1}}\) và \(\widehat {{A_2}}\) là hai góc kề bù.

Đúng
Sai

b) \(\widehat {{A_1}} = 60^\circ \).

Đúng
Sai

c) \(\widehat {{A_1}}\) và \(\widehat {xOy}\) ở vị trí so le trong.

Đúng
Sai
d) \(Ox\) song song với \(Am.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP