Câu hỏi:

29/01/2026 12 Lưu

Đài truyền hình điều tra ý kiến của một số khán giả về một chương trình giải trí. Kết quả điều tra được thống kê trong bảng dưới đây.

 

Thích

Không thích

Nam

523

154

Nữ

147

68

Chọn ngẫu nhiên một trong số những người được điều tra. Tính xác suất của các biến cố:

a) A: “Chọn được 1 khán giả nũ không thích chương trình”;

b) B: “Chọn được 1 khán giả nam”;

c) C: “Chọn được 1 khán giả thích chương trình”.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(P\left( A \right) = \frac{{17}}{{223}}\);                                                  b) \(P\left( B \right) = \frac{{677}}{{892}}\);                        c) \(P\left( C \right) = \frac{{335}}{{446}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xác định số tập con có hai phần tử của tập \(X = \left\{ {3;5;6;7;9} \right\}\), ta có tập hợp các phần tử của không gian mẫu.

a) Ta có:\[\Omega = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;7} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( \Omega \right) = 10\]

b) Ta có \[{\rm{A}} = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{A}} \right) = 9\] . Vậy \(P\left( A \right) = \frac{9}{{10}}\).

\(B = \left\{ {\left( {5;9} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{B}} \right) = 3\). Vậy \[P\left( B \right) = \frac{3}{{10}}\].

Lời giải

Mô tả không gian mẫu:

Đồng xu

Xúc xắc

\(S\)

\(N\)

1

\(\left( {1,S} \right)\)

\(\left( {1;N} \right)\)

2

\(\left( {2;S} \right)\)

\(\left( {2;N} \right)\)

3

\(\left( {3;S} \right)\)

\(\left( {3;N} \right)\)

4

\(\left( {4;S} \right)\)

\(\left( {4;N} \right)\)

5

\(\left( {5;S} \right)\)

\(\left( {5;N} \right)\)

6

\(\left( {6;S} \right)\)

\(\left( {6;N} \right)\)

Có 12 kết quả có thể là đồng khả năng. \(n(\Omega ) = 12\).

- Có 1 kết quả thuận lợi cho biến cố \(E\)\((6,S)\). Vậy \(P\left( E \right) = \frac{1}{{12}}\).

- Có 6 kết quả thuận lợi cho biến cố \(F\)\((1,S);(1,N);(3,S);(3,N);(5,S)\); \((5,N)\). Vậy \(P\left( F \right) = \frac{6}{{12}} = \frac{1}{2}\).

- Có 3 kết quả thuận lợi cho biến cố \(G\)\((2,S);(4,S);(6,S)\). Vậy \(P\left( G \right) = \frac{3}{{12}} = \frac{1}{4}\).

- Có 7 kết quả thuận lợi cho biến cố \(H\)\((5,S);(5,N);(1,N);(2,N);(3,N);\) \((4,N);(6,N)\). Vậy \(P\left( H \right) = \frac{7}{{12}}\).