Hộp thứ nhất chứa 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai chứa 5 viên bi xanh và một số viên bi đỏ. Các biên bi có cùng kích thước và khối lượng. Bạn An chọn ngẫu nhiên 1 viên bi từ hộp thứ nhất, bạn Thắng chọn ngẫu nhiên 1 viên bi từ hộp thứ hai.
a) Tính xác suất của biến cố "Bạn An chọn được viên bi màu xanh".
b) Biết rằng xác suất bạn Thắng chọn ngẫu nhiên được viên bi màu xanh bằng xác suất bạn An chọn được viên bi màu xanh. Trong hộp thứ hai có bao nhiêu viên bi đỏ?
Hộp thứ nhất chứa 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai chứa 5 viên bi xanh và một số viên bi đỏ. Các biên bi có cùng kích thước và khối lượng. Bạn An chọn ngẫu nhiên 1 viên bi từ hộp thứ nhất, bạn Thắng chọn ngẫu nhiên 1 viên bi từ hộp thứ hai.
a) Tính xác suất của biến cố "Bạn An chọn được viên bi màu xanh".
b) Biết rằng xác suất bạn Thắng chọn ngẫu nhiên được viên bi màu xanh bằng xác suất bạn An chọn được viên bi màu xanh. Trong hộp thứ hai có bao nhiêu viên bi đỏ?
Quảng cáo
Trả lời:
a) Số kết quả có thề xảy ra khi bạn An chọn 1 viên bi từ hộp thứ nhất là 9.
Số kết quả thuận lợi cho biến cố A: "Bạn An chọn được viên bi màu xanh" là 3 .
Xác suất của biến cố A là \({\rm{P}}({\rm{A}}) = \frac{3}{9} = \frac{1}{3}\).
b) Gọi \(x\) là số viên bi đỏ trong hộp thứ hai. Số kết quả có thể xảy ra khi Thắng chọn 1 viên bi từ hộp thứ hai là \(x + 5\). Số kết quả thuận lợi cho biến cố B: "Bạn Thắng chọn được viên bi màu xanh" là 5 .
Xác suất của biến cố B là \(P(B) = \frac{5}{{x + 5}}.\)Do \(P(A) = P(B)\) nên \(\frac{5}{{x + 5}} = \frac{1}{3}\).
Giải phương trình này, ta được \(x = 10\).
Vậy trong hộp thứ hai có 10 viên bi đỏ.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xác định số tập con có hai phần tử của tập \(X = \left\{ {3;5;6;7;9} \right\}\), ta có tập hợp các phần tử của không gian mẫu.
a) Ta có:\[\Omega = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;7} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( \Omega \right) = 10\]
b) Ta có \[{\rm{A}} = \left\{ {\left( {3;5} \right);\left( {3;6} \right);\left( {3;7} \right);\left( {3;9} \right);\left( {5;6} \right);\left( {5;9} \right);\left( {6;7} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{A}} \right) = 9\] . Vậy \(P\left( A \right) = \frac{9}{{10}}\).
\(B = \left\{ {\left( {5;9} \right);\left( {6;9} \right);\left( {7;9} \right)} \right\} \Rightarrow {\rm{n}}\left( {\rm{B}} \right) = 3\). Vậy \[P\left( B \right) = \frac{3}{{10}}\].
Lời giải
Mô tả không gian mẫu:
|
Đồng xu Xúc xắc |
\(S\) |
\(N\) |
|
1 |
\(\left( {1,S} \right)\) |
\(\left( {1;N} \right)\) |
|
2 |
\(\left( {2;S} \right)\) |
\(\left( {2;N} \right)\) |
|
3 |
\(\left( {3;S} \right)\) |
\(\left( {3;N} \right)\) |
|
4 |
\(\left( {4;S} \right)\) |
\(\left( {4;N} \right)\) |
|
5 |
\(\left( {5;S} \right)\) |
\(\left( {5;N} \right)\) |
|
6 |
\(\left( {6;S} \right)\) |
\(\left( {6;N} \right)\) |
Có 12 kết quả có thể là đồng khả năng. \(n(\Omega ) = 12\).
- Có 1 kết quả thuận lợi cho biến cố \(E\) là \((6,S)\). Vậy \(P\left( E \right) = \frac{1}{{12}}\).
- Có 6 kết quả thuận lợi cho biến cố \(F\) là \((1,S);(1,N);(3,S);(3,N);(5,S)\); \((5,N)\). Vậy \(P\left( F \right) = \frac{6}{{12}} = \frac{1}{2}\).
- Có 3 kết quả thuận lợi cho biến cố \(G\) là \((2,S);(4,S);(6,S)\). Vậy \(P\left( G \right) = \frac{3}{{12}} = \frac{1}{4}\).
- Có 7 kết quả thuận lợi cho biến cố \(H\) là \((5,S);(5,N);(1,N);(2,N);(3,N);\) \((4,N);(6,N)\). Vậy \(P\left( H \right) = \frac{7}{{12}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
