Cho \[S = \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{2022}}}}\]. So sánh \[S\] với 1.
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 2 Toán 6 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Ta có: \[S = \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{2022}}}}\].
Suy ra \[2S = 2\,\,.\,\,\left( {\frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{2022}}}}} \right)\]
\[ = \frac{2}{2} + \frac{2}{{{2^2}}} + \frac{2}{{{2^3}}} + ... + \frac{2}{{{2^{2022}}}}\]\[ = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2021}}}}\].
Ta có \[S = \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{2022}}}}\] và \[2S = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2021}}}}\].
Suy ra \(2S - S = \left( {1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2021}}}}} \right) - \left( {\frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{2022}}}}} \right)\) .
Hay \(S = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2021}}}} - \frac{1}{2} - \frac{1}{{{2^2}}} - \frac{1}{{{2^3}}} - ... - \frac{1}{{{2^{2022}}}}\)
\( = 1 + \left( {\frac{1}{2} - \frac{1}{2}} \right) + \left( {\frac{1}{{{2^2}}} - \frac{1}{{{2^2}}}} \right) + \left( {\frac{1}{{{2^3}}} - \frac{1}{{{2^3}}}} \right) + ... + \left( {\frac{1}{{{2^{2021}}}} - \frac{1}{{{2^{2021}}}}} \right) - \frac{1}{{{2^{2022}}}}\)
\( = 1 - \frac{1}{{{2^{2022}}}} = \frac{{{2^{2022}} - 1}}{{{2^{2022}}}}\).
Mà \[{2^{2022}}--1 < {2^{2022}}\] nên \[\frac{{{2^{2022}} - 1}}{{{2^{2022}}}} < 1\];
Vậy \[S = \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ... + \frac{1}{{{2^{2022}}}} < 1\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2
Lời giải
Đáp án đúng là: A
Ta có \(\frac{{ - 55}}{{2022}} < 0;\,\,\frac{{ - 2}}{{ - 119}} = \frac{2}{{119}} > 0;\,\,\frac{5}{8} > 0;\,\,\frac{0}{{14}} = 0\).
Do đó, phân số nhỏ nhất trong các phân số trên là \(\frac{{ - 55}}{{2022}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

