Một chiếc lều trẻ em có dạng hình tru với chiều 160 cm và thể tích 1,256 m3. Tính diện tích vải để may được một chiếc lều( không tính mặt đáy)

Quảng cáo
Trả lời:
Đổi 160cm=1,6m
Bán kính đáy hình nón là \(R = \sqrt {\frac{{3V}}{{\pi h}}} = \sqrt {\frac{{3.1,256}}{{\pi .1,6}}} \approx 0,9\,(m)\)
Đường sinh của hình nón là \(l = \sqrt {0,{9^2} + 1,{6^2}} \approx 1,84\,\left( m \right)\)
Diện tích vải để may một chiếc lều là \(S = \pi .0,9.1,84 \approx 5,2\,\,\left( {{m^2}} \right)\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho tam giác vuông \[H\] tại\(AB (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/12-1769746011.png)
a) Khi quay tam giác \[R = HC = 2\] xung quanh trục \(\Delta AHC\), ta thu được hình nón có bán kính đáy \(r = AC = a\), chiều cao \(h = AB = a\sqrt 3 \)và đường sinh là cạnh huyền \(l = BC\).
Xét tam giác \( = 2\sqrt 3 \) vuông tại \(V = \frac{1}{3}\pi {R^2}.AH\), theo pythagore, ta có:
\[\begin{array}{l}B{C^2} = A{C^2} + A{B^2} = 2{a^2}\\ \Rightarrow BC = 2a \Rightarrow l = 2a\end{array}\]
Đường sinh của hình nón \[2a\] (đvđd)
b) Thể tích hình nón là: \[V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi .{a^2}.a\sqrt 3 = \frac{{{a^3}\sqrt 3 \pi }}{3}\] (đvtt)
Lời giải


Vậy diện tích lá dùng để làm nón là 110%.1318,8=1450,68 cm2
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



