Câu hỏi:

30/01/2026 2 Lưu

Một chiếc thùng chứa đầy nước có hình một khối lập phương. Đặt vào trong thùng đó một khối nón sao cho đỉnh khối nón trùng với tâm một mặt của khối lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích của lượng nước trào ra ngoài và lượng nước còn lại ở trong thùng.
Một chiếc thùng chứa đầy nước có hình một khối lập phương. Đặt vào trong thùng đó một khối nón sao cho đỉnh khối nón trùng với tâm một mặt của khối lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Coi khối lập phương có cạnh \[1\]. Thể tích khối lập phường là \[V = 1\].

Từ giả thiết ta suy ra khối nón có chiều cao \[h = 1\], bán kính đáy \[r = \frac{1}{2}\].

Thể tích lượng nước trào ra ngoài là thể tích \[{V_1}\] của khối nón.

Ta có: \[{V_1} = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi .\frac{1}{4}.1 = \frac{\pi }{{12}}\].

Thể tích lượng nước còn lại trong thùng là: \[{V_2} = V - {V_1} = 1 - \frac{\pi }{{12}} = \frac{{12 - \pi }}{{12}}\].

Do đó: \[\frac{{{V_1}}}{{{V_2}}} = \frac{\pi }{{12 - \pi }}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Tính diện tích toàn phần của hình nón thu được khi quay tam giác \[AA'C\] quanh trục \(AA'\). (ảnh 1)                 Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Tính diện tích toàn phần của hình nón thu được khi quay tam giác \[AA'C\] quanh trục \(AA'\). (ảnh 2)

Quay tam giác \[AA'C\] một vòng quanh trục \(AA'\) tạo thành hình nón có chiều cao \(AA' = a\), bán kính đáy \[r = AC = a\sqrt 2 \], đường sinh \(l = A'C = \sqrt {AA{'^2} + A{C^2}}  = a\sqrt 3 \).

Diện tích toàn phần của hình nón: \(S = \pi r\left( {r + l} \right) = \pi a\sqrt 2 \left( {a\sqrt 2  + a\sqrt 3 } \right) = \pi \left( {\sqrt 6  + 2} \right){a^2}\).

Lời giải

Cho tam giác \(ABC\) vuông tạ (ảnh 1)                           Cho tam giác \(ABC\) vuông tạ (ảnh 2)

Ta có công thức tính thể tích hình nón có chiều cao \(h\) và bán kính \(r\) là \(V = \frac{1}{3}\pi {r^2}h\)

+ Khi quay tam giác \(ABC\) quanh cạnh \(AB\) thì:

\(h = AB = 6cm\) và \(r = AC = 8cm\) thì \({V_1} = \frac{1}{3}\pi {.8^2}.6 = 128\pi \)

+ Khi quay tam giác \(ABC\) quanh cạnh \(AC\) thì:

\(h = AC = 8cm\) và \(r = AB = 6cm\) thì \({V_2} = \frac{1}{3}\pi {.6^2}.8 = 96\pi \)

Vậy: \[\frac{{{V_1}}}{{{V_2}}} = \frac{4}{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP