Một cái phểu có dạng hình nón, chiều cao của phểu là \(20cm\). Người ta đổ một lượng nước vào phểu sao cho chiều cao của cột nước trong phểu là \(10cm\). Nếu bịt kín miệng phểu rồi lật ngược lên thì chiều cao của cột nước trong phểu bằng bao nhiêu?

Một cái phểu có dạng hình nón, chiều cao của phểu là \(20cm\). Người ta đổ một lượng nước vào phểu sao cho chiều cao của cột nước trong phểu là \(10cm\). Nếu bịt kín miệng phểu rồi lật ngược lên thì chiều cao của cột nước trong phểu bằng bao nhiêu?

Quảng cáo
Trả lời:
Gọi \(R\) là bán kính đáy của cái phểu ta có \(\frac{R}{2}\) là bán kính của đáy chứa cột nước
Ta có thể tích phần nón không chứa nước là \(V = \frac{1}{3}\pi {\left( R \right)^2}.20 - \frac{1}{3}\pi {\left( {\frac{R}{2}} \right)^2}.10 = \frac{{35}}{6}\pi {R^2}\).
Khi lật ngược phểu Gọi \(h\) chiều cao của cột nước trong phểu.phần thể tích phần nón không chứa nước là \[V = \frac{1}{3}\pi \left( {20 - h} \right){\left( {\frac{{R\left( {20 - h} \right)}}{{20}}} \right)^2} = \frac{1}{{1200}}\pi {\left( {20 - h} \right)^3}{R^2}\].
\[\frac{1}{{1200}}\pi {\left( {20 - h} \right)^3}{R^2} = \frac{{35}}{6}\pi {R^2} \Rightarrow {\left( {20 - h} \right)^3} = 7000 \Rightarrow h \approx 0,87\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
![Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Tính diện tích toàn phần của hình nón thu được khi quay tam giác \[AA'C\] quanh trục \(AA'\). (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2026/01/14-1769746078.png)
Quay tam giác \[AA'C\] một vòng quanh trục \(AA'\) tạo thành hình nón có chiều cao \(AA' = a\), bán kính đáy \[r = AC = a\sqrt 2 \], đường sinh \(l = A'C = \sqrt {AA{'^2} + A{C^2}} = a\sqrt 3 \).
Diện tích toàn phần của hình nón: \(S = \pi r\left( {r + l} \right) = \pi a\sqrt 2 \left( {a\sqrt 2 + a\sqrt 3 } \right) = \pi \left( {\sqrt 6 + 2} \right){a^2}\).
Lời giải

Ta có công thức tính thể tích hình nón có chiều cao \(h\) và bán kính \(r\) là \(V = \frac{1}{3}\pi {r^2}h\)
+ Khi quay tam giác \(ABC\) quanh cạnh \(AB\) thì:
\(h = AB = 6cm\) và \(r = AC = 8cm\) thì \({V_1} = \frac{1}{3}\pi {.8^2}.6 = 128\pi \)
+ Khi quay tam giác \(ABC\) quanh cạnh \(AC\) thì:
\(h = AC = 8cm\) và \(r = AB = 6cm\) thì \({V_2} = \frac{1}{3}\pi {.6^2}.8 = 96\pi \)
Vậy: \[\frac{{{V_1}}}{{{V_2}}} = \frac{4}{3}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
