Câu hỏi:

30/01/2026 3 Lưu

Một cái phểu có dạng hình nón, chiều cao của phểu là \(20cm\). Người ta đổ một lượng nước vào phểu sao cho chiều cao của cột nước trong phểu là \(10cm\). Nếu bịt kín miệng phểu rồi lật ngược lên thì chiều cao của cột nước trong phểu bằng bao nhiêu?

Một cái phểu có dạng hình nón, chiều cao của phểu là \(20cm\). Người ta đổ một lượng nước vào phểu sao cho chiều cao của cột nước trong phểu là \(10cm\). Nếu bịt kín miệng phểu rồi lật ngược lên thì chiều cao của cột nước trong phểu bằng bao nhiêu? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(R\) là bán kính đáy của cái phểu ta có \(\frac{R}{2}\) là bán kính của đáy chứa cột nước

Ta có thể tích phần nón không chứa nước là \(V = \frac{1}{3}\pi {\left( R \right)^2}.20 - \frac{1}{3}\pi {\left( {\frac{R}{2}} \right)^2}.10 = \frac{{35}}{6}\pi {R^2}\).

Khi lật ngược phểu Gọi \(h\) chiều cao của cột nước trong phểu.phần thể tích phần nón không chứa nước là \[V = \frac{1}{3}\pi \left( {20 - h} \right){\left( {\frac{{R\left( {20 - h} \right)}}{{20}}} \right)^2} = \frac{1}{{1200}}\pi {\left( {20 - h} \right)^3}{R^2}\].

\[\frac{1}{{1200}}\pi {\left( {20 - h} \right)^3}{R^2} = \frac{{35}}{6}\pi {R^2} \Rightarrow {\left( {20 - h} \right)^3} = 7000 \Rightarrow h \approx 0,87\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Tính diện tích toàn phần của hình nón thu được khi quay tam giác \[AA'C\] quanh trục \(AA'\). (ảnh 1)                 Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Tính diện tích toàn phần của hình nón thu được khi quay tam giác \[AA'C\] quanh trục \(AA'\). (ảnh 2)

Quay tam giác \[AA'C\] một vòng quanh trục \(AA'\) tạo thành hình nón có chiều cao \(AA' = a\), bán kính đáy \[r = AC = a\sqrt 2 \], đường sinh \(l = A'C = \sqrt {AA{'^2} + A{C^2}}  = a\sqrt 3 \).

Diện tích toàn phần của hình nón: \(S = \pi r\left( {r + l} \right) = \pi a\sqrt 2 \left( {a\sqrt 2  + a\sqrt 3 } \right) = \pi \left( {\sqrt 6  + 2} \right){a^2}\).

Lời giải

Cho tam giác \(ABC\) vuông tạ (ảnh 1)                           Cho tam giác \(ABC\) vuông tạ (ảnh 2)

Ta có công thức tính thể tích hình nón có chiều cao \(h\) và bán kính \(r\) là \(V = \frac{1}{3}\pi {r^2}h\)

+ Khi quay tam giác \(ABC\) quanh cạnh \(AB\) thì:

\(h = AB = 6cm\) và \(r = AC = 8cm\) thì \({V_1} = \frac{1}{3}\pi {.8^2}.6 = 128\pi \)

+ Khi quay tam giác \(ABC\) quanh cạnh \(AC\) thì:

\(h = AC = 8cm\) và \(r = AB = 6cm\) thì \({V_2} = \frac{1}{3}\pi {.6^2}.8 = 96\pi \)

Vậy: \[\frac{{{V_1}}}{{{V_2}}} = \frac{4}{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP