Câu hỏi:

30/01/2026 5 Lưu

Cho hình cầu có bán kính \[R\]như hình vẽ. Hãy thay dấu “\[?\]”bằng giá trị thích hợp và hoàn thành bảng sau:

Hình cầu

Bán kính (dm)

Diện tích mặt cầu (dm2)

Thể tích hình cầu (dm3)

Cho hình cầu có bán kính \[R\]như hình vẽ. Hãy thay dấu “\[?\]”bằng giá trị thích hợp và hoàn thành bảng sau: (ảnh 1)

\[4\]

\[?\]

\[?\]

\[?\]

\[144\pi \]

\[?\]

\[?\]

\[?\]

\[36\pi \]

\[?\]

\[196\pi \]

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

· Với \[R = 3\]

+ Diện tích mặt cầu có bán kính \[R\] là: \[S = 4\pi {R^2} = 4\pi {.4^2} = 64\pi \left( {d{m^2}} \right)\]

+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.4^3} = \frac{{256}}{3}\pi \left( {d{m^3}} \right)\]

· Với \[S = 144\pi \]

+ Bán kính mặt cầu là:

\[\begin{array}{l}S = 4\pi {R^2}\\{R^2} = \frac{S}{{4\pi }}\\{R^2} = \frac{{144\pi }}{{4\pi }}\\{R^2} = 36\\ \Rightarrow R = 6\left( {dm} \right)\end{array}\]

+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.6^3} = 288\pi \left( {d{m^3}} \right)\]

· Với \[V = 36\pi \]

+ Bán kính mặt cầu là:

\[\begin{array}{l}V = \frac{4}{3}\pi {R^3}\\{R^3} = \frac{{3V}}{{4\pi }}\\{R^3} = \frac{{3.36\pi }}{{4\pi }}\\{R^3} = 27\\R = 3\left( {dm} \right)\end{array}\]

+ Diện tích mặt cầu có bán kính \[R\] là: \[S = 4\pi {R^2} = 4\pi {.3^2} = 36\pi \left( {d{m^2}} \right)\]

· Với \[S = 196\pi \]

+ Bán kính mặt cầu là:

\[\begin{array}{l}S = 4\pi {R^2}\\{R^2} = \frac{S}{{4\pi }}\\{R^2} = \frac{{196\pi }}{{4\pi }}\\{R^2} = 49\\ \Rightarrow R = 7\left( {dm} \right)\end{array}\]

+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.7^3} = \frac{{1372}}{3}\pi \left( {d{m^3}} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Tâm \[I\] của mặt cầu ngoại tiếp lập phương \[ABCD.A'B'C'D'\] là trung điểm của đường chéo \[AC'\] và \[R = IA = \frac{{AC'}}{2}\]

Khối lập phương cạnh a nên:

\[AA'{\rm{ }} = {\rm{ }}2cm,{\rm{ }}A'C'{\rm{ }} = {\rm{ 2}}\sqrt 2 cm\]

\[\begin{array}{l} \Rightarrow AC' = \sqrt {A{{A'}^2} + A'{{C'}^2}}  = \sqrt {{2^2} + {{\left( {2\sqrt 2 } \right)}^2}}  = 2\sqrt 3 \\ \Rightarrow R = \frac{{AC'}}{2} = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \end{array}\].

Vậy bán kính hình cầu trên là \[R = \sqrt 3 cm\]

b)Vậy thể tích khối cầu cần tính là:

\[V = \frac{4}{3}.\pi .{R^3} = \frac{4}{3}.\pi .{\left( {\sqrt 3 } \right)^3} = \frac{4}{3}\pi .3\sqrt 3  = 4\sqrt 3 \pi \left( {c{m^3}} \right)\]

Lời giải

a) Do mặt cầu tiếp xúc hết sáu mặt của hình lập phương tại trung điểm các đường chéo của sáu mặt hình lập phương nên bán kính của hình cầu bẳng nửa cạnh hình lập phương hay \(R = \frac{3}{2}cm\).

Diện tích mặt cầu là: \[S = 4\pi {R^2} = 4\pi {\left( {\frac{3}{2}} \right)^2} = 9\pi \left( {c{m^2}} \right)\]

b) Thể tích hình cầu \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi .{\left( {\frac{3}{2}} \right)^3} = 9\pi \left( {c{m^3}} \right)\).