Câu hỏi:

30/01/2026 5 Lưu

Cho hình lập phương \[ABCD.A'B'C'D'\] có cạnh bằng \[2cm\]. Một mặt cầu đi qua tám đỉnh \[A,B,C,D,A',B',C',D'\] của hình lập phương đó (như hình vẽ).
Cho hình lập phương \[ABCD.A'B'C'D'\] có cạnh bằng \[2cm\]. Một mặt cầu đi qua tám đỉnh \[A,B,C,D,A',B',C',D'\] của hình lập phương đó (như hình vẽ). (ảnh 1)

a) Tính bán kính hình cầu trên.

b) Tính thể tích hình cầu trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Tâm \[I\] của mặt cầu ngoại tiếp lập phương \[ABCD.A'B'C'D'\] là trung điểm của đường chéo \[AC'\] và \[R = IA = \frac{{AC'}}{2}\]

Khối lập phương cạnh a nên:

\[AA'{\rm{ }} = {\rm{ }}2cm,{\rm{ }}A'C'{\rm{ }} = {\rm{ 2}}\sqrt 2 cm\]

\[\begin{array}{l} \Rightarrow AC' = \sqrt {A{{A'}^2} + A'{{C'}^2}}  = \sqrt {{2^2} + {{\left( {2\sqrt 2 } \right)}^2}}  = 2\sqrt 3 \\ \Rightarrow R = \frac{{AC'}}{2} = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \end{array}\].

Vậy bán kính hình cầu trên là \[R = \sqrt 3 cm\]

b)Vậy thể tích khối cầu cần tính là:

\[V = \frac{4}{3}.\pi .{R^3} = \frac{4}{3}.\pi .{\left( {\sqrt 3 } \right)^3} = \frac{4}{3}\pi .3\sqrt 3  = 4\sqrt 3 \pi \left( {c{m^3}} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

· Với \[R = 3\]

+ Diện tích mặt cầu có bán kính \[R\] là: \[S = 4\pi {R^2} = 4\pi {.4^2} = 64\pi \left( {d{m^2}} \right)\]

+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.4^3} = \frac{{256}}{3}\pi \left( {d{m^3}} \right)\]

· Với \[S = 144\pi \]

+ Bán kính mặt cầu là:

\[\begin{array}{l}S = 4\pi {R^2}\\{R^2} = \frac{S}{{4\pi }}\\{R^2} = \frac{{144\pi }}{{4\pi }}\\{R^2} = 36\\ \Rightarrow R = 6\left( {dm} \right)\end{array}\]

+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.6^3} = 288\pi \left( {d{m^3}} \right)\]

· Với \[V = 36\pi \]

+ Bán kính mặt cầu là:

\[\begin{array}{l}V = \frac{4}{3}\pi {R^3}\\{R^3} = \frac{{3V}}{{4\pi }}\\{R^3} = \frac{{3.36\pi }}{{4\pi }}\\{R^3} = 27\\R = 3\left( {dm} \right)\end{array}\]

+ Diện tích mặt cầu có bán kính \[R\] là: \[S = 4\pi {R^2} = 4\pi {.3^2} = 36\pi \left( {d{m^2}} \right)\]

· Với \[S = 196\pi \]

+ Bán kính mặt cầu là:

\[\begin{array}{l}S = 4\pi {R^2}\\{R^2} = \frac{S}{{4\pi }}\\{R^2} = \frac{{196\pi }}{{4\pi }}\\{R^2} = 49\\ \Rightarrow R = 7\left( {dm} \right)\end{array}\]

+ Thể tích của hình cầu có bán kính \[R\] là: \[V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.7^3} = \frac{{1372}}{3}\pi \left( {d{m^3}} \right)\]

Lời giải

a) Do mặt cầu tiếp xúc hết sáu mặt của hình lập phương tại trung điểm các đường chéo của sáu mặt hình lập phương nên bán kính của hình cầu bẳng nửa cạnh hình lập phương hay \(R = \frac{3}{2}cm\).

Diện tích mặt cầu là: \[S = 4\pi {R^2} = 4\pi {\left( {\frac{3}{2}} \right)^2} = 9\pi \left( {c{m^2}} \right)\]

b) Thể tích hình cầu \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi .{\left( {\frac{3}{2}} \right)^3} = 9\pi \left( {c{m^3}} \right)\).