Câu hỏi:

30/01/2026 23 Lưu

Một quả bóng bằng da có đường kính 22 cm. Tính diện tích da cần dùng để làm quả bóng nếu không tính tỉ lệ hao hụt (lấy p = 3,14).

Một quả bóng bằng da có đường kính 22 cm. Tính diện tích da cần dùng để làm quả bóng nếu không tính tỉ lệ hao hụt (lấy  = 3,14). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một quả bóng bằng da có đường kính 22 cm. Tính diện tích da cần dùng để làm quả bóng nếu không tính tỉ lệ hao hụt (lấy  = 3,14). (ảnh 2)

Vì quả bóng da hình cầu có bán kính R = 22 : 2 = 11 cm nên diện tích bề mặt của quả bóng là:

\[S = 4\pi {R^2} = 4.3,{14.11^2} = 1519,8\left( {c{m^2}} \right)\]

Vậy diện tích da cần dùng để làm quả bóng là \[1519,8\left( {c{m^2}} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hình nón và quả cầu như hình vẽ bên dưới.

Thả một quả cầu đặc có bán k (ảnh 2)

\(OI = \frac{{I{K^2}}}{{SI}} = \frac{{{3^2}}}{5} = \frac{9}{5}\,\,\,\left( {{\rm{cm}}} \right).\)

Thể tích chỏm cầu tâm I có bán kính OK là: \({V_2} = \pi .{\left( {IK - OI} \right)^2}.\left( {IK - \frac{{IK - OI}}{3}} \right) = \pi .{\left( {3 - \frac{9}{5}} \right)^2}.\left( {3 - \frac{{3 - {\textstyle{9 \over 5}}}}{3}} \right) = \frac{{468\pi }}{{125}}\,\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Thể tích hình nón có đỉnh S, đáy hình tròn tâm O, bán kính đáy OK là:

\({V_1} = \frac{1}{3}.SO.{S_{(O;OK)}}\)\(\frac{1}{3}.\frac{{16}}{5}.\pi {\left( {\frac{{12}}{5}} \right)^2} = \frac{{768\pi }}{{125}}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Thể tích phần không gian kín giới hạn bởi bề mặt quả cầu và bề mặt trong của vật hình nón là: \({V_1} - {V_2} = \frac{{768\pi }}{{125}} - \frac{{468\pi }}{{125}} = \frac{{12\pi }}{5}\,\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Lời giải

Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. (ảnh 2)

Gọi \[R = 2,7\,cm\] là bán kính của viên bi. Ta có bán kính phần trong đáy cốc là \[2R\].

Thể tích nước ban đầu là: \[{V_1} = \pi {\left( {2R} \right)^2}.4,5 = 18\pi {R^2}\].

Thể tích viên bi là: \[{V_2} = \frac{4}{3}\pi {R^3}\].

Thể tích nước sau khi thả viên bi là: \[V = {V_1} + {V_2} = 18\pi {R^2} + \frac{4}{3}\pi {R^3} = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)\].

Gọi \[h\] là chiều cao mực nước sau khi thả viên bi vào.

Ta có: \[V = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right) = \pi {\left( {2R} \right)^2}.h \Rightarrow h = \frac{{2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)}}{{\pi {{\left( {2R} \right)}^2}}} = \frac{{\left( {9 + \frac{2}{3}R} \right)}}{2} = 5.4\,\left( {cm} \right)\].