Câu hỏi:

30/01/2026 23 Lưu

Trên bàn có một cốc nước hình trụ chứa đầy nước có chiều cao bằng \(3\)lần đường kính của đáy; một viên bi và một hình nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón đó ( như hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu( bỏ qua bề dày của lớp vỏ thủy tinh)

Trên bàn có một cốc nước hình trụ chứa đầy nước có chiều cao bằng \(3\)lần đường kính của đáy; một viên bi và một hình nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng của cốc nước. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(R,h\) lần lượt là bán kính đáy và là chiều cao của hình trụ

\(h = 6R\)

Thể tích của hình trụ \({V_T} = \pi 6{R^3}.\)

Khối cầu bên trong hình trụ có bán kính \(R\) nên hình cầu có thể tích \({V_C} = \frac{4}{3}\pi {R^3}.\)

Khối nón bên trong hình trụ có bán kính\(R\) và chiều cao \(h = 4R\) nên hình nón có thể tích \({V_N} = \frac{4}{3}\pi {R^3}\)

Thể tích lượng nước còn lại bên trong hình trụ

\(V = {V_T} - \left( {{V_C} + {V_N}} \right) = 6\pi {R^3} - \frac{8}{3}\pi {R^3} = \frac{{10}}{3}\pi {R^3}.\)

Vậy \(\frac{V}{{{V_T}}} = \frac{5}{9}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hình nón và quả cầu như hình vẽ bên dưới.

Thả một quả cầu đặc có bán k (ảnh 2)

\(OI = \frac{{I{K^2}}}{{SI}} = \frac{{{3^2}}}{5} = \frac{9}{5}\,\,\,\left( {{\rm{cm}}} \right).\)

Thể tích chỏm cầu tâm I có bán kính OK là: \({V_2} = \pi .{\left( {IK - OI} \right)^2}.\left( {IK - \frac{{IK - OI}}{3}} \right) = \pi .{\left( {3 - \frac{9}{5}} \right)^2}.\left( {3 - \frac{{3 - {\textstyle{9 \over 5}}}}{3}} \right) = \frac{{468\pi }}{{125}}\,\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Thể tích hình nón có đỉnh S, đáy hình tròn tâm O, bán kính đáy OK là:

\({V_1} = \frac{1}{3}.SO.{S_{(O;OK)}}\)\(\frac{1}{3}.\frac{{16}}{5}.\pi {\left( {\frac{{12}}{5}} \right)^2} = \frac{{768\pi }}{{125}}{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Thể tích phần không gian kín giới hạn bởi bề mặt quả cầu và bề mặt trong của vật hình nón là: \({V_1} - {V_2} = \frac{{768\pi }}{{125}} - \frac{{468\pi }}{{125}} = \frac{{12\pi }}{5}\,\,\,\left( {{\rm{c}}{{\rm{m}}^3}} \right).\)

Lời giải

Người ta thả một viên bi có dạng hình cầu có bán kính \[2,7\,cm\] vào một chiếc cốc hình trụ đang chứa nước (tham khảo hình vẽ dưới). Biết rằng bán kính của phần trong đáy cốc bằng \[5,4\,cm\] và chiều cao của mực nước ban đầu trong cốc bằng \[4,5\,cm\]. (ảnh 2)

Gọi \[R = 2,7\,cm\] là bán kính của viên bi. Ta có bán kính phần trong đáy cốc là \[2R\].

Thể tích nước ban đầu là: \[{V_1} = \pi {\left( {2R} \right)^2}.4,5 = 18\pi {R^2}\].

Thể tích viên bi là: \[{V_2} = \frac{4}{3}\pi {R^3}\].

Thể tích nước sau khi thả viên bi là: \[V = {V_1} + {V_2} = 18\pi {R^2} + \frac{4}{3}\pi {R^3} = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)\].

Gọi \[h\] là chiều cao mực nước sau khi thả viên bi vào.

Ta có: \[V = 2\pi {R^2}\left( {9 + \frac{2}{3}R} \right) = \pi {\left( {2R} \right)^2}.h \Rightarrow h = \frac{{2\pi {R^2}\left( {9 + \frac{2}{3}R} \right)}}{{\pi {{\left( {2R} \right)}^2}}} = \frac{{\left( {9 + \frac{2}{3}R} \right)}}{2} = 5.4\,\left( {cm} \right)\].