Một trái dưa có dạng hình cầu. Bổ đôi trái dưa này ra thì mặt cắt có diện tích là \(314\;{\rm{c}}{{\rm{m}}^2}\). Tính thể tích của trái dưa đó.
Một trái dưa có dạng hình cầu. Bổ đôi trái dưa này ra thì mặt cắt có diện tích là \(314\;{\rm{c}}{{\rm{m}}^2}\). Tính thể tích của trái dưa đó.
Quảng cáo
Trả lời:
Khi bổ đôi trái dưa thì mặt cắt là một hình tròn. Ta có: \(S = \pi {R^2} \Rightarrow R = \sqrt {\frac{S}{\pi }} \approx \sqrt {\frac{{314}}{{3,14}}} = 10\;{\rm{cm}}\)
Vậy bán kính của trái dưa là \(10\;{\rm{cm}}\). Thể tích của trái dưa là:
\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi \cdot {10^3} \approx 4187\;{\rm{c}}{{\rm{m}}^3}\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi bán kính đáy thùng rác văn phòng là \(R\) và chiều cao \(h.\)
Theo đề bài, ta có: \(R = \frac{{0,4}}{2} = 0,2{\rm{m; }}h = 0,8{\rm{m}}{\rm{.}}\)
Thể tích thùng rác: \(V = \pi {R^2}h = \pi {\left( {0,2} \right)^2}.0,8 = \frac{4}{{125}}\pi \left( {{{\rm{m}}^{\rm{3}}}} \right).\)
Lời giải
a) Ta có \({S_{xq}} = 2\pi Rl = 2 \cdot 3,142 \cdot 16 \cdot 9 = 983{\rm{ c}}{{\rm{m}}^2}.\)
b) Ta có \(V = \pi {R^2}h = 3,142 \cdot {16^2} \cdot 9 = 7239{\rm{ c}}{{\rm{m}}^3}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


