Câu hỏi:

01/02/2026 5 Lưu

Ba bạn Bắc, Trung, Nam vào một quán giải khát. Bắc gọi một li sinh tố bơ, Trung gọi một li sinh tố chuối và Nam gọi một li sinh tố dứa. Khi mang các li sinh tố ra, cô phục vụ đã đưa cho mối người một li sinh tố một cách ngẫu nhiên.

a) Hãy xác định không gian mẫu của phép thử. Không gian mẫu của phép thử có bao nhiêu phần tử?

b) Liệt kê các kết quả thuận lợi cho biến cố A : "Bạn Bắc nhận đúng li sinh tố mình đã gọi".

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Kí hiệu li sinh tố bo, li sinh tố chuối và li sinh tố dứa lần lượt là \({\rm{B}},{\rm{C}}\) và D .

Kí hiệu XYZ là kết quả li sinh tố theo thứ tự mà ba bạn Bắc, Trung, Nam lần lượt nhận được là \({\rm{X}},{\rm{Y}},{\rm{Z}}\).

Không gian mẫu của phép thử là: \(\Omega = \left\{ {{\rm{BCD}};{\rm{BDC}},{\rm{CBD}};{\rm{CDB}};{\rm{DBC}};{\rm{DCB}}} \right\}\).

Không gian mẫu của phép thử có 6 phần tử.

b) Các kết quả thuận lợi cho biến cố A là: \({\rm{BCD}};{\rm{BDC}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phép thử ngẫu nhiên là gieo một con xúc xắc và gieo một đồng xu liên tiếp hai lần.

b) Kết quả có thể của gieo một con xúc xắc là số chấm xuất hiện trên con xúc xắc: 1,2,3,4,5,6 chấm. Kết quả có thể của gieo một đồng xu liên tiếp hai lần là SS, SN, NS, NN (mặt sấp (S), mặt ngửa (N)). Ta lập bảng sau:

          Gieo đồng xu

                     hai lần

 

Gieo xúc sắc

\(SS\)

\(SN\)

\(NS\)

\(NN\)

1

\(1SS\)

\(1SN\)

\(1NS\)

\(1NN\)

2

\(2SS\)

\(2SN\)

\(2NS\)

\(2NN\)

3

\(3SS\)

\(3SN\)

\(3NS\)

\(3NN\)

4

\(4SS\)

\(4SN\)

\(4NS\)

\(4NN\)

5

\(5SS\)

\(5SN\)

\(5NS\)

\(5NN\)

6

\(6SS\)

\(6SN\)

\(6NS\)

\(6NN\)

Mỗi ô là một kết quả có thể. Không gian mẫu là tập hợp 24 ô của bảng trên.

Vậy \(\Omega = \left\{ {1SS;2SS;3SS; \ldots ;5NN;6NN} \right\}\)

Lời giải

a) Phép thử là lấy ngẫu nhiên từ một hộp đựng 6 chiếc kẹo với các nhãn hiệu A, B, C, D, E, F lần lượt hai chiếc kẹo, chiếc kẹo được lấy ra lần đầu không trả lại vào hộp. Kết quả của phép thử là một cặp \((x,y)\), trong đó \(x\)\(y\) tương ứng là nhãn hiệu của chiếc kẹo mà hai bạn Lan và Hồng lấy trong hộp. Vì chiếc kẹo bạn Lan lấy ra không trả lại vào hộp nên \(x \ne y\).

b) Ta liệt kê được tất cả các kết quả có thể của phép thử bằng cách lập bảng sau:

          Hồng

Lan

A

B

C

D

E

F

A

\(\bcancel{{\left( {A,A} \right)}}\)

\(\left( {A,B} \right)\)

\(\left( {A,C} \right)\)

\(\left( {A,D} \right)\)

\(\left( {A,E} \right)\)

\(\left( {A,F} \right)\)

B

\(\left( {B,A} \right)\)

\(\bcancel{{\left( {B,B} \right)}}\)

\(\left( {B,C} \right)\)

\(\left( {B,D} \right)\)

\(\left( {B,E} \right)\)

\(\left( {B,F} \right)\)

C

\(\left( {C,A} \right)\)

\(\left( {C,B} \right)\)

\[\bcancel{{\left( {C,C} \right)}}\]

\(\left( {C,D} \right)\)

\(\left( {C,E} \right)\)

\(\left( {C,F} \right)\)

D

\(\left( {D,A} \right)\)

\(\left( {D,B} \right)\)

\(\left( {D,C} \right)\)

\(\bcancel{{\left( {D,D} \right)}}\)

\(\left( {D,E} \right)\)

\(\left( {D,F} \right)\)

E

\(\left( {E,A} \right)\)

\(\left( {E,B} \right)\)

\(\left( {E,C} \right)\)

\(\left( {E,D} \right)\)

\(\bcancel{{\left( {E,E} \right)}}\)

\(\left( {E,F} \right)\)

F

\(\left( {F,A} \right)\)

\(\left( {F,B} \right)\)

\(\left( {F,C} \right)\)

\(\left( {F,D} \right)\)

\(\left( {F,E} \right)\)

\(\bcancel{{\left( {F,F} \right)}}\)

Chú ý rằng \(x \ne y\) nên cặp có hai phần tử trùng nhau không được tính, tức là trong bảng ta phải xoá 6 ô (A, A); (B, B); (C, C); (D, D); (E, E); (F, F).

Vậy \(\Omega = \{ (B,A);(C,A); \ldots ..;(D,F);(E,F)\} \). Không gian mẫu có \(36 - 6 = 30\) (phần tử).