Cho vòng quay mặt trời gồm mười hai cabin như vẽ bên dưới. Hỏi để cabin \(A\) di chuyển đến vị trí cao nhất thì vòng quay phải quay thuận chiều kim đồng hồ quanh tâm bao nhiêu độ?

Câu hỏi trong đề: 11 bài tập Toán 9 Cánh diều Bài 2. Phép quay có đáp án !!
Quảng cáo
Trả lời:
Vì vòng quay mặt trời gồm mười hai cabin nên hai cabin liền kề cách nhau một góc bằng: \(360^\circ :12 = 30^\circ \)
Do vậy để cabin \(A\) di chuyển đến vị trí cao nhất thì vòng quay thuận chiều kim đồng hồ quanh tâm một góc bằng: \(30^\circ .4 = 120^\circ \)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đa giác đều 12 cạnh \[ABCDEFGHIKLM\] nội tiếp đường tròn \(\left( O \right)\) (Xem hình vẽ).
Ta có: và
Và \(OA = OB = OC = OD = \ldots \) (bán kính đường tròn ngoại tiếp)
Ta chọn phép quay thuận chiều (hoặc ngược chiều) góc quay biến đa giác đã cho thành chính nó.
Lời giải

Phép quay ngược chiều 60o tâm O biến A thành D. Ta có: \(OD = OA\) và nên tam giác \(AOD\) là tam giác đều \[ \Rightarrow AD = OA = OD = R\] (R là bán kính đường tròn \(\left( O \right)\)).
Chứng minh tương tự, ta có: \(BE = CF = R\)\( \Rightarrow AD = BE = CF = R(*)\)
Tam giác \(ABC\) đều nội tiếp đường tròn \(\left( {\rm{O}} \right)\), ta có: \({\rm{OD}} = {\rm{OA}} = {\rm{OB}}\) (1)
Lại có mà (cmt)
Từ (1) và (2) suy ra tam giác \(DOB\) là tam giác đều.
Chứng minh tương tự các tam giác \(EOC\) và \(FOA\) cũng là tam giác đều.\( \Rightarrow DB = EC = EA = R\left( {**} \right)\)
Từ (*) và (**)\( \Rightarrow AD = DB = BE = EC = CE = EA\left( { = R} \right)\left( 3 \right)\)
Dễ thấy \(\widehat {{\rm{ADB}}} = \widehat {{\rm{DBE}}} = \widehat {{\rm{BEC}}} = \widehat {{\rm{ECF}}} = \widehat {{\rm{CFA}}} = \widehat {{\rm{FAD}}}\) (4)
Từ (3) và \((4) \Rightarrow ADBECF\) là một lục giác đều.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



