Câu hỏi:

11/02/2026 25 Lưu

Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là \(0,8\); hoàn thành câu trung bình là \(0,6\) và hoàn thành câu khó là \(0,15\). Làm đúng mỗi một câu dễ An được \(0,1\) điểm, làm đúng mỗi một câu trung bình An được \(0,25\) điểm và làm đúng mỗi một câu khó An được \(0,5\) điểm.

 

a) [NB] Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là \(72\% \).
Đúng
Sai
b) [TH] Khi An làm 3 câu thuộc ba loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là \(0,45\).
Đúng
Sai
c) [TH] Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình.
Đúng
Sai
d) [VD,VDC] Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn \(0,2\% \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi biến cố A: “An làm đúng mỗi câu đề ôn tập ở mức độ dễ” \( \Rightarrow P(A) = 0,8\).

Biến cố B: “An làm đúng mỗi câu đề ôn tập ở mức độ trung bình” \( \Rightarrow P(B) = 0,6\).

Biến cố C: “An làm đúng mỗi câu đề ôn tập ở mức độ khó” \( \Rightarrow P(C) = 0,15\).

a) Sai. Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là

\(P\left( {ABC} \right) = 0,8 \times 0,6 \times 0,15 = 0,072 = 7,2\% \).

b) Sai. Khi An làm 3 câu thuộc ba loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là

\(P\left( {AB\overline C \cup A\overline B C \cup \overline A BC} \right) = 0,8 \times 0,6 \times 0,85 + 0,8 \times 0,4 \times 0,15 + 0,2 \times 0,6 \times 0,15 = 0,474\).

c) Đúng. Xác suất để An làm đúng 3 câu đủ ba loại là \(0,072\).

Xác suất để An làm sai 3 câu ở mức độ trung bình là \(0,4 \times 0,4 \times 0,4 = 0,064 < 0,072\).

                 d) Sai. An làm 5 câu và đạt đúng 2 điểm khi An làm 3 câu khó và 2 câu trung bình khi đó xác suất xảy ra của An bằng \({(0,15)^3} \times {(0,6)^2} = \frac{{243}}{{200000}} < 0,2\% \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 2550.

Giả sử ba tấm thẻ lấy ra có số ghi là \(a,b,c\) theo thứ tự tăng dần (\(a < b < c\)).

Để ba số này lập thành một cấp số cộng, ta phải có tính chất: \(a + c = 2b\)

Điều này có nghĩa là tổng của số đầu \(a\) và số cuối \(c\) phải là một số chẵn (vì \(2b\) luôn chẵn).

Để tổng \((a + c)\) là số chẵn, thì \(a\) và \(c\) phải cùng tính chẵn lẻ (tức là cùng là số chẵn hoặc cùng là số lẻ).

Nhận xét quan trọng: Khi bạn chọn được 2 số đầu và cuối (\(a\) và \(c\)) có cùng tính chẵn lẻ, thì số ở giữa (\(b = \frac{{a + c}}{2}\)) sẽ là duy nhất và chắc chắn là số nguyên nằm giữa \(a\) và \(c\).

\( \Rightarrow \) Bài toán quy về việc: Chọn ngẫu nhiên 2 tấm thẻ từ tập hợp sao cho 2 tấm đó cùng chẵn hoặc cùng lẻ.

Tập hợp \(S = \{ 1,2,3,...,102\} \) có 102 phần tử.

Số lượng số lẻ là: \(\{ 1,3,5,...,101\} \). Số lượng = \(\frac{{101 - 1}}{2} + 1 = 51\) số.

Số lượng số chẵn là: \(\{ 2,4,6,...,102\} \). Số lượng = \(\frac{{102 - 2}}{2} + 1 = 51\) số.

Để có 3 số lập thành cấp số cộng, ta cần chọn 2 số đầu cuối \(a,c\) từ cùng một nhóm (chẵn hoặc lẻ):

+ Trường hợp 1: Chọn 2 số đều là số lẻ.

Số cách chọn 2 số từ 51 số lẻ là tổ hợp chập 2 của 51: \(C_{51}^2 = \frac{{51.50}}{2} = 1275{\rm{ (c\'a ch)}}\).

(Ví dụ: Chọn 1 và 5 thì số ở giữa chắc chắn là 3. Bộ là 1, 3, 5)

+ Trường hợp 2: Chọn 2 số đều là số chẵn.

Số cách chọn 2 số từ 51 số chẵn là tổ hợp chập 2 của 51: \(C_{51}^2 = \frac{{51.50}}{2} = 1275{\rm{ (c\'a ch)}}\).

(Ví dụ: Chọn 2 và 10 thì số ở giữa chắc chắn là 6. Bộ là 2, 6, 10)

Bước 3: Tổng hợp kết quả.

Tổng số cách lấy được ba tấm thẻ lập thành cấp số cộng là:

1275 + 1275 = 2550 cách

Lời giải

Đáp án: 0,45.

Xét các biến cố \(A\): “lấy được viên bi đỏ của hộp I”.

\(B\): “lấy được viên bi đỏ của hộp II”.

\(C\): “lấy được viên bi đỏ của hộp III”.

Xác suất lấy được viên bi đỏ của hộp I: \(P\left( A \right) = \frac{a}{{a + 2}}\).

Xác suất lấy được viên bi đỏ của hộp II: \(P\left( B \right) = \frac{b}{{b + 3}}\).

Xác suất lấy được viên bi đỏ của hộp III: \(P\left( C \right) = \frac{6}{{6 + 4}} = 0,6\).

Gọi biến cố \(D\): “lấy ra ít nhất một viên bi đỏ” \( \Rightarrow \overline D \): “lấy ra được 3 viên bi xanh”.

\( \Rightarrow P\left( {\overline D } \right) = 1 - P\left( D \right) = 0,024\)

\( \Leftrightarrow \frac{2}{{a + 2}}.\frac{3}{{b + 3}}.\frac{4}{{10}} = 0,024 \Leftrightarrow \left( {a + 2} \right)\left( {b + 3} \right) = 100\)(1).

Xác suất lấy được cả 3 viên bi đỏ \(P\left( A \right).P\left( B \right).P\left( C \right) = 0,336 \Leftrightarrow \frac{a}{{a + 2}}.\frac{b}{{b + 3}}.0,6 = 0,336\).

\( \Leftrightarrow ab = 56\) (2)

Từ (1) và (2) \( \Rightarrow \left\{ \begin{array}{l}a = 8\\b = 7\end{array} \right.\) (vì \(a,b\) là số nguyên).

Xác suất lấy được đúng 2 viên đỏ:

\(P\left( A \right).P\left( B \right).P\left( {\overline C } \right) + P\left( A \right).P\left( {\overline B } \right).P\left( C \right) + P\left( {\overline A } \right).P\left( B \right).P\left( C \right)\)

                                                        \( = 0,8.0,7.0,4 + 0,8.0,3.0,6 + 0,2.0,7.0,6 = 0,452 \simeq 0,45\).

Câu 4

A. \(\left( { - 5;\,1} \right)\).                 
B. \(\left( {1;\, + \infty } \right)\). 

C. \(\left( { - \infty ;\, - 5} \right) \cup \left( {1;\, + \infty } \right)\).

D. \(\left\{ { - 5;\,1} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(y = x - \frac{1}{{x - 1}}\).                           
B. \(y = - x + \frac{1}{{x - 1}}\).                               
C. \(y = - x - \frac{1}{{x - 1}}\).                      
D. \(y = x + \frac{1}{{x - 1}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) [NB] Hàm số nghịch biến trên khoảng \(\left( {0;1} \right)\).
Đúng
Sai
b) [TH] \(\mathop {\lim }\limits_{x \to {1^ + }} y = - \infty \).
Đúng
Sai
c) [TH] Phương trình đường tiệm cận xiên của đồ thị hàm số là: \(y = x + 1\).
Đúng
Sai
d) [VD,VDC] Tổng \(a + b + c + d = 2\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP