Câu hỏi:

11/02/2026 8 Lưu

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(4\). Tính tích vô hướng \(\overrightarrow {AC'} .\overrightarrow {BC} \).

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4 (ảnh 1)

A. \(8\sqrt 3 \).                                 
B. \(16\sqrt 3 \).           
C. \(16\).                       
D. \(0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \(\cos \left( {\overrightarrow {AC'} ,\overrightarrow {BC} } \right) = \cos \left( {\overrightarrow {AC'} ,\overrightarrow {AD} } \right) = \frac{{A{{C'}^2} + A{D^2} - D{{C'}^2}}}{{2.AC'.AD}}\) \( = \frac{{{{\left( {4\sqrt 3 } \right)}^2} + {4^2} - {{\left( {4\sqrt 2 } \right)}^2}}}{{2.4\sqrt 3 .4}}\)\( = \frac{1}{{\sqrt 3 }}\).

\(\overrightarrow {AC'} .\overrightarrow {BC} = AC'.BC.\cos \left( {\overrightarrow {AC'} ,\overrightarrow {BC} } \right)\)\( = 4\sqrt 3 .4.\frac{1}{{\sqrt 3 }} = 16\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{3}{4}\).             
B. \(\frac{2}{3}\).           
C. \(\frac{1}{3}\).  
D. \(\frac{1}{2}\).

Lời giải

Chọn A

Cho hình tứ diện ABCD. Gọi M là trọng tâm tam giác BCD. Đường thẳng qua M song song với AB cắt mặt phẳng (ACD) tại N.  (ảnh 1)

Gọi K là trung điểm của cạnh CD.

Vì M là trọng tâm tam giác BCD, nên M phải nằm trên đường trung tuyến BK.

Theo tính chất trọng tâm: \(\frac{{BM}}{{BK}} = \frac{2}{3}\)\(\frac{{MK}}{{BK}} = \frac{1}{3}\).

 Xét mặt phẳng (ABK):

Đường thẳng qua M song song với AB nằm trong mặt phẳng (ABK).

Mặt phẳng (ABK) cắt mặt phẳng (ACD) theo giao tuyến là đường thẳng AK.

Do đó, điểm N (giao điểm của đường thẳng qua M song song AB với (ACD)) phải nằm trên cạnh AK.

Áp dụng định lý Ta-lét:

Trong tam giác ABK, ta có \(MN\parallel AB\).

Theo định lý Ta-lét:

\(\frac{{MN}}{{AB}} = \frac{{KM}}{{KB}}\)

Như đã tính ở trên, \(\frac{{KM}}{{KB}} = \frac{1}{3}\).

Vậy \(\frac{{MN}}{{AB}} = \frac{1}{3}\).

Câu 2

A. \(\left( { - \infty ;1} \right)\).                          
B. \(\left( {0;1} \right)\).                                        
C. \(\left( { - 1;0} \right)\).                                 
D. \(\left( {2; + \infty } \right)\).

Lời giải

Chọn C.

Điều kiện xác định: \({x^2} - 2x > 0 \Leftrightarrow x \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\).

\(y' = \frac{{2x - 2}}{{\left( {{x^2} - 2x} \right)\ln 2}} = 0 \Leftrightarrow x = 1\).

Ta có bảng biến thiên:

Hàm số y = log _2}( {{x^2} - 2x}) nghịch biến trên khoảng (ảnh 1)
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\).

Câu 3

A. \(y = x + 4\).               
B. \(x = 2\).                   
C. \(y = x + 5\).             
D. \(y = x + 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(2\).    
B. \(5\).                            
C. \(4\).                        
D. \(3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. 1.                                
B. 0.                              
C. 3.                            
  D. 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(31,6\).                      
B. \(31,5\).                  
  C. \(30,6\).                    
D. \(30,5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x = 2\).                     
B. \(x = 1\).                  
C. \(y = 1\).                
   D. \(y = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP