Câu hỏi:

13/07/2024 1,143

Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:

ax2 + bx + c = a( x - x1)(x - x2)

Áp dụng : phân tích đa thức thành nhân tử.

3x2 + 8x + 2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

3x2 + 8x + 2 = 0

Có a = 3; b' = 4; c = 2

⇒ Δ’ = 42 – 2.3 = 10 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm hai số u và v trong mỗi trường hợp sau:

u – v = 5, uv = 24

Xem đáp án » 13/07/2024 22,875

Câu 2:

Tìm giá trị của m để phương trình có nghiệm, rồi tính tổng và tích các nghiệm theo m.

x2 – 2x + m = 0;

Xem đáp án » 11/07/2024 16,548

Câu 3:

Tìm hai số u và v trong mỗi trường hợp sau:

u + v = 42, uv = 441

Xem đáp án » 13/07/2024 13,534

Câu 4:

Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:

ax2 + bx + c = a( x - x1)(x - x2)

Áp dụng : phân tích đa thức thành nhân tử.

 2x2 - 5x + 3

Xem đáp án » 13/07/2024 9,974

Câu 5:

Tìm giá trị của m để phương trình có nghiệm, rồi tính tổng và tích các nghiệm theo m.

x2 + 2(m – 1)x + m2 = 0

Xem đáp án » 11/07/2024 9,464

Câu 6:

Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình sau:

4x2 + 2x – 5 = 0

Xem đáp án » 11/07/2024 8,538

Câu 7:

Tìm hai số u và v trong mỗi trường hợp sau:

u + v = -42, uv = -400

Xem đáp án » 13/07/2024 8,016
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua