Câu hỏi:
13/07/2024 17,520Cho đường thẳng Δ : x – y + 2 = 0 và hai điểm O(0; 0), A(2; 0).
a, Tìm điểm đối xứng của O qua Δ.
b, Tìm điểm M trên Δ sao cho độ dài đường gấp khúc OMA ngắn nhất.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a, Cách 1: Gọi O’ là điểm đối xứng với O qua (Δ)
⇒ OO’ ⊥ Δ tại trung điểm I của OO’.
+ (Δ) nhận là một vtpt ⇒ (Δ) nhận là một vtcp
OO’ ⊥ Δ ⇒ OO’ nhận là một vtpt. Mà O(0, 0) ∈ OO’
⇒ Phương trình đường thẳng OO’: x + y = 0.
+ I là giao OO’ và Δ nên tọa độ của I là nghiệm của hệ phương trình:
Cách 2: Gọi O’(x, y) là điểm đối xứng với O qua Δ.
+ Trung điểm I của OO’ là
+ (Δ) nhận là một vtpt ⇒ (Δ) nhận là một vtcp.
Từ (1) và (2) ta có hệ phương trình
Vậy O’(–2; 2).
b)
+ Vì O và A nằm cùng một nửa mặt phẳng bờ là đường thẳng Δ nên đoạn thẳng OA không cắt Δ.
O’ và A thuộc hai nửa mặt phẳng khác nhau bờ là đường thẳng Δ nên O’A cắt Δ.
Do O’ đối xứng với O qua đường thẳng ∆ nên ∆ là đường trung trực của đoạn thẳng OO’, với mọi M ∈ Δ ta có MO = MO’.
Độ dài đường gấp khúc OMA bằng OM + MA = O’M + MA ≥ O’A.
⇒ O’M + MA ngắn nhất khi O’M + MA = O’A ⇔ M là giao điểm của O’A và Δ.
⇒ O’A nhận là một vtcp
⇒ O’A nhận là một vtpt. Mà A(2; 0) ∈ O’A
⇒ Phương trình đường thẳng O’A : 1(x - 2) + 2(y - 0)= 0 hay x + 2y – 2 = 0.
M là giao điểm của O’A và Δ nên tọa độ điểm M là nghiệm của hệ :
Vậy điểm M cần tìm là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tập hợp các điểm cách đều hai đường thẳng: (Δ1): 5x + 3y – 3 = 0 và (Δ2) : 5x + 3y + 7 = 0.
Câu 2:
Ta biết rằng Mặt Trăng chuyển động quang Trái Đất theo một quỹ đạo là một elip mà Trái Đất là một tiêu điểm. Elip đó có chiều dài trục lớn và trục nhỏ lần lượt là 769 266 km và 768 106 km. Tính khoảng cách ngắn nhất và khoảng cách dài nhất từ Trái Đất đến Mặt Trăng, biết rằng các khoảng cách đó đạt được khi Trái Đất và Mặt Trăng nằm trên trục lớn của elip
Câu 3:
Tính góc giữa hai đường thẳng ∆1 và ∆2 trong trường hợp sau: Δ1: 2x + y – 4 = 0 và Δ2 : 5x – 2y + 3 = 0.
Câu 4:
Cho elip (E): . Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó.
Câu 5:
Cho ba điểm A(4; 3), B(2; 7) và C(-3; -8).
a, Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC;
b, Gọi T là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh T, G và H thẳng hàng.
c, Viết phương trình đường tròn ngoại tiếp tam giác ABC.
Câu 6:
Cho hình chữ nhật ABCD. Biết các đỉnh A(5; 1), C(0; 6) và phương trình CD: x + 2y -12 = 0. Tìm phương trình đường thẳng chứa các cạnh còn lại.
về câu hỏi!