Câu hỏi:

31/03/2020 48,622

Chứng minh rằng trong mọi tam giác ABC ta đều có:

a, a = b cosC + c cosB;

b, sinA = sinBcosC + sinCcosB;

c, ha = 2RsinBsinC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Áp dụng hệ quả của định lí côsin trong tam giác ta có:

Giải bài 5 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Theo định lí tổng ba góc của tam giác ta có:

A + B + C = 180º

⇒ sin A = sin [180º – (B – C)]= sin (B + C) = sinB.cos C + cosB. sinC (đpcm)

c) Theo định lí sin trong tam giác ABC, ta có:

Giải bài 5 trang 99 SGK hình học 10 | Giải toán lớp 10

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử đường tròn cần lập có tâm O; bán kính R.

Đường thẳng Δ đi qua M(2; -2) và có VTPT là n(4; 3) nên đường thẳng này có 1 VTCP là u(3; -4) . Phương trình tham số của đường thẳng Δ là:

Giải bài 8 trang 99 SGK hình học 10 | Giải toán lớp 10

O nằm trên Δ ⇒ O(2 + 3t; -2 – 4t)

Đường tròn (O; R) tiếp xúc với d1 và d2 ⇒ d(O; d1) = d(O; d2) = R

Ta có: d(O; d1) = d(O; d2)

Giải bài 8 trang 99 SGK hình học 10 | Giải toán lớp 10

+ Với t = 0 ⇒ O(2; -2) ⇒ R = d(O; d1) = 2√2

Phương trình đường tròn: (x – 2)2 + (y + 2)2 = 8.

+ Với t = -2 ⇒ O(-4; 6) , R = d(O; d1) = 3√2

Phương trình đường tròn: (x + 4)2 + (y – 6)2 = 18

Vậy có hai phương trình đường tròn thỏa mãn là:

(x – 2)2 + (y + 2)2 = 8 hoặc (x + 4)2 + (y – 6)2 = 18

Lời giải

a) (E): Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10 có a = 10; b = 6 ⇒ c2 = a2 – b2 = 64 ⇒ c = 8.

+ Tọa độ các đỉnh của elip là: A1(-10; 0); A2(10; 0); B1(0; -6); B2(0; 6)

+ Tọa độ hai tiêu điểm của elip: F1(-8; 0) và F2(8; 0)

+ Vẽ elip:

Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Ta có: M ∈ (E) ⇒ MF1 + MF2 = 2a = 20 (1)

MN // Oy ⇒ MN ⊥ F1F2 ⇒ MF12 – MF22 = F1F22 = (2c)2 = 162

⇒ (MF1 + MF2).(MF1 – MF2) = 162

⇒ MF1 – MF2 = 12,8 (Vì MF1 + MF2 = 20) (2).

Từ (1) và (2) ta có hệ phương trình

Giải bài 9 trang 99 SGK hình học 10 | Giải toán lớp 10

Vậy MN = 2.MF2 = 7,2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay