Câu hỏi:

31/03/2020 4,857

Cho tam giác ABC với H là trực tâm. Biết phương trình đường thẳng AB, BH và AH lần lượt là 4x + y – 12 = 0, 5x – 4y – 15 = 0 và 2x + 2y – 9 = 0. Hãy viết phương trình hai đường thẳng chứa hai cạnh còn lại và đường cao thứ ba.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trực tâm H là giao điểm của BH và AH ⇒ tọa độ H là nghiệm của hệ:

Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

A là giao điểm của AB và AH nên tọa độ A là nghiệm của hệ phương trình:

Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

B là giao điểm BH và AB nên tọa độ điểm B là nghiệm của hệ:

Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

+ AC ⊥ HB, mà HB có một vtpt là (5; -4)⇒ AC nhận (4; 5) là một vtpt

AC đi qua Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

⇒ Phương trình đường thẳng AC: Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10 hay 4x + 5y – 20 = 0.

+ CH ⊥ AB, AB có một vtpt là (4; 1) ⇒ CH nhận (1; -4) là một vtpt

CH đi qua Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10

⇒ Phương trình đường thẳng CH: Giải bài 7 trang 99 SGK hình học 10 | Giải toán lớp 10 hay CH: 3x – 12y - 1 = 0.

+ BC ⊥ AH , mà AH nhận (2; 2) là một vtpt

⇒ BC nhận (1; -1) là một vtpt

BC đi qua B(3; 0)

⇒ Phương trình đường thẳng BC: 1(x - 3) – 1(y – 0) = 0 hay x – y – 3 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Áp dụng hệ quả của định lí côsin trong tam giác ta có:

Giải bài 5 trang 99 SGK hình học 10 | Giải toán lớp 10

b) Theo định lí tổng ba góc của tam giác ta có:

A + B + C = 180º

⇒ sin A = sin [180º – (B – C)]= sin (B + C) = sinB.cos C + cosB. sinC (đpcm)

c) Theo định lí sin trong tam giác ABC, ta có:

Giải bài 5 trang 99 SGK hình học 10 | Giải toán lớp 10

Lời giải

Giả sử đường tròn cần lập có tâm O; bán kính R.

Đường thẳng Δ đi qua M(2; -2) và có VTPT là n(4; 3) nên đường thẳng này có 1 VTCP là u(3; -4) . Phương trình tham số của đường thẳng Δ là:

Giải bài 8 trang 99 SGK hình học 10 | Giải toán lớp 10

O nằm trên Δ ⇒ O(2 + 3t; -2 – 4t)

Đường tròn (O; R) tiếp xúc với d1 và d2 ⇒ d(O; d1) = d(O; d2) = R

Ta có: d(O; d1) = d(O; d2)

Giải bài 8 trang 99 SGK hình học 10 | Giải toán lớp 10

+ Với t = 0 ⇒ O(2; -2) ⇒ R = d(O; d1) = 2√2

Phương trình đường tròn: (x – 2)2 + (y + 2)2 = 8.

+ Với t = -2 ⇒ O(-4; 6) , R = d(O; d1) = 3√2

Phương trình đường tròn: (x + 4)2 + (y – 6)2 = 18

Vậy có hai phương trình đường tròn thỏa mãn là:

(x – 2)2 + (y + 2)2 = 8 hoặc (x + 4)2 + (y – 6)2 = 18

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay