Câu hỏi:

12/07/2024 5,903

Tìm tâm vị tự của hai đường tròn trong các trường hợp sau.

Giải bài 2 trang 29 sgk Hình học 11 | Để học tốt Toán 11

Câu hỏi trong đề:   Giải toán 11: Hình học !!

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi hai đường tròn lần lượt là (I; R) và (I’; R’).

Các xác định tâm vị tự của hai đường tròn:

- Trên đường tròn (I; R) lấy điểm M bất kì.

- Trên đường tròn (I’; R’) dựng đường kính AB // IM.

- MA và MB lần lượt cắt II’ tại O1 và O2 chính là hai tâm vị tự của hai đường tròn.

Đối với từng trường hợp ta xác định được các tâm vị tự O1; O2 như hình dưới.

+ Hình 1.62a:

Giải bài 2 trang 29 sgk Hình học 11 | Để học tốt Toán 11

+ Hình 1.62b:

Giải bài 2 trang 29 sgk Hình học 11 | Để học tốt Toán 11

+ Hình 1.62c.

Giải bài 2 trang 29 sgk Hình học 11 | Để học tốt Toán 11

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có A’, B’, C’ theo thứ tự là trung điểm của các cạnh BC, CA, AB. Tìm một phép vị tự biến tam giác ABC thành tam giác A’B’C’ (h.1.56).

Giải bài tập Toán 11 | Giải Toán lớp 11

Xem đáp án » 12/07/2024 9,333

Câu 2:

Cho tam giác ABC có ba góc nhọn và H là trực tâm. Tìm ảnh của tam giác ABC qua phép vị tự tâm H, tỉ số 1/2.

Xem đáp án » 11/07/2024 8,281

Câu 3:

Cho tam giác ABC. Gọi E và F tương ứng là trung điểm của AB và AC. Tìm một phép vị tự biến B và C tương ứng thành E và F.

Xem đáp án » 11/07/2024 5,809

Câu 4:

Chứng minh rằng khi thực hiện liên tiếp hai phép vị tự tâm O sẽ được một phép vị tự tâm O.

Xem đáp án » 12/07/2024 5,386

Câu 5:

Để ý rằng: điểm B nằm giữa hai điểm A và C khi và chỉ khi AB = tAC, 0 < t < 1.

Sử dụng ví dụ trên chứng minh rằng nếu điểm B nằm giữa hai điểm A và C thì điểm B’ nằm giữa hai điểm A’ và C’.

Xem đáp án » 12/07/2024 1,579

Câu 6:

Chứng minh nhận xét 4.

M = VO,KM  M = VO,1/kM'.

Xem đáp án » 06/04/2020 1,312

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store