Câu hỏi:

12/07/2024 24,062

Cho điểm A không nằm trên mặt phẳng (α) chứa tam giác BCD. Lấy E và F là các điểm lần lượt nằm trên các cạnh AB , AC.

a) Chứng minh đường thẳng EF nằm trong mặt phẳng (ABC).

b) Giả sử EF và BC cắt nhau tại I, chứng minh I là điểm chung của hai mặt phẳng (BCD) và (DEF).

Giải bài tập Đại số 11 | Để học tốt Toán 11

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) E ∈ AB mà AB ⊂ (ABC)

⇒ E ∈ (ABC)

F ∈ AC mà AC ⊂ (ABC)

⇒ F ∈ (ABC)

Đường thẳng EF có hai điểm E, F cùng thuộc mp(ABC) nên theo tính chất 3 thì EF ⊂ (ABC).

b) I ∈ BC mà BC ⊂ (BCD) nên I ∈ (BCD) (1)

I ∈ EF mà EF ⊂ (DEF) nên I ∈ (DEF) (2)

Từ (1) và (2) suy ra I là điểm chung của hai mặt phẳng (BCD) và (DEF).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải bài 6 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 6 trang 54 sgk Hình học 11 | Để học tốt Toán 11

⇒ NP và CD không song song với nhau.

Gọi giao điểm NP và CD là I.

I ∈ NP ⇒ I ∈ (MNP).

Mà I ∈ CD

Vậy I ∈ CD ∩ (MNP)

b) Trong mặt phẳng (ACD) thì AD và MI cắt nhau tại điểm J:

J ∈ AD ⇒ J ∈ (ACD)

J ∈ MI ⇒ J ∈ (MNP)

Vậy J là một điểm chung của hai mặt phẳng (ACD) và (MNP).

Ta đã có M là một điểm chung của hai mặt phẳng (ACD) và (MNP).

 

Vậy MJ = (ACD) ∩ (MNP).

Lời giải

Giải bài 10 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) SM, CD cùng thuộc (SCD) và không song song.

Gọi N là giao điểm của SM và CD.

⇒ N ∈ CD và N ∈ SM

Mà SM ⊂ (SMB)

⇒ N ∈ (SMB)

⇒ N = (SMB) ∩ CD.

b) N ∈ CD ⊂ (ABCD)

⇒ BN ⊂ (ABCD)

⇒ AC; BN cùng nằm trong (ABCD) và không song song

Gọi giao điểm của AC và BN là H.

+ H ∈ AC ⊂ (SAC)

+ H ∈ BN ⊂ (SBM)

⇒ H ∈ (SAC) ∩ (SBM)

Dễ dàng nhận thấy giao điểm thứ hai của (SAC) và (SBM) là S

⇒ (SAC) ∩ (SBM) = SH.

c) Trong mp(SBM), gọi giao điểm của BM và SH là I, ta có:

I ∈ BM

I ∈ SH ⊂ (SAC).

 

⇒ I = BM ∩ (SAC).

) Trong mp(SAC), gọi giao điểm của AI và SC là P.

+ P ∈ AI, mà AI ⊂ (AMB) ⇒ P ∈ (AMB)

⇒ P = (AMB) ∩ SC.

Lại có P ∈ SC, mà SC ⊂ (SCD) ⇒ P ∈ (SCD).

⇒ P ∈ (AMB) ∩ (SCD).

Lại có: M ∈ (SCD) (gt)

⇒ M ∈ (MAB) ∩ (SCD)

Vậy giao điểm của (MAB) và (SCD) là đường thẳng MP.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP