Câu hỏi:

12/07/2024 2,890

Cho điểm S không thuộc mặt phẳng (α) có hình chiếu trên (α) là điểm H. Với điểm M bất kì trên (α) và không trùng với H, ta gọi SM là đường xiên và đoạn HM là hình chiếu của đường xiên đó.

Chứng minh rằng:

a) Hai đường xiên bằng nhau khi và chỉ khi hai hình chiếu của chúng bằng nhau;

b) Với hai đường xiên cho trước, đường xiên nào lớn hơn thì có hình chiếu lớn hơn và ngược lại, đường xiên nào có hình chiếu lớn hơn thì lớn hơn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 8 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giả sử ta có hai đường xiên SM, SN và các hình chiếu HM, HN của chúng trên mp (α).

Vì SH ⊥ mp(α)

⇒ SH ⊥ HM và SH ⊥ HN

⇒ ΔSHN và ΔSHM vuông tại H.

Áp dụng định lí Py-ta- go vào hai tam giác vuông này ta có:

 

 SM2 = SH2 + HM2;  và SN2 = SH2 + HN2.  a) SM = SN  SM2 = SN2  HM2 = HN2  HM = HN.  b) SM > SN  SM2 > SN2  HM2 > HN2  HM > HN.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

a) Tam giác ABC cân tại A có AI là đường trung tuyến nên đồng thời là đường cao:

AI ⊥ BC

+) Tương tự, tam giác BCD cân tại D có DI là đường trung tuyến nên đồng thời là đường cao:

DI ⊥ BC

+) Ta có: Giải bài tập Toán 11 | Giải Toán lớp 11

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

Lời giải

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Do H là chân đường vuông góc hạ từ O tới mặt phẳng (ABC) nên:

OH ⊥ (ABC) ⇒ OH ⊥ BC (2)

Mà OA; OH ⊂ (OAH); OA ∩ OH = O (3)

Từ (1); (2) và (3) ⇒ BC ⊥ (OAH)

⇒ BC ⊥ AH

Chứng minh tương tự ta có: AC ⊥ BH

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

⇒ H là trực tâm ΔABC.

b) Gọi M = AH ∩ BC.

+ BC ⊥ (OAH) ⇒ BC ⊥ OM.

ΔOBC vuông tại O có đường cao OM

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

+ OA ⊥ (OBC) ⇒ OA ⊥ OM ⇒ ΔOAM vuông tại O.

OH ⊥ (ABC) ⇒ OH ⊥ AM.

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11