Câu hỏi:

12/07/2024 13,877

Cho tứ diện đều ABCD. Gọi M, N lần lượt là trung điểm của cạnh BC và AD. Chứng minh rằng: MN ⊥ BC và MN ⊥ AD (h.3.42)

Câu hỏi trong đề:   Giải toán 11: Hình học !!

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài tập Toán 11 | Giải Toán lớp 11

Tứ diện đều ABCD nên các mặt của tứ diện là các tam giác đều bằng nhau

Ta có: ∆BAD = ∆CAD (c.c.c)

Suy ra hai đường trung tuyến tương ứng bằng nhau: BN = CN

⇒ ΔBNC cân tại N.

Do NM là đường trung tuyến của tam giác cân BNC nên NM đồng thời là đường cao:

⇒ MN ⊥ BC

Chứng minh tương tự MN ⊥ AD

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Tính khoảng cách từ S tới mặt đáy (ABC).

Xem đáp án » 12/07/2024 52,319

Câu 2:

Cho hình hộp chữ nhật ABCD.A'B'C'D; có AB = a, BC = b, CC' = c.

a) Tính khoảng cách từ B đến mặt phẳng (ACC'A').

b) Tính khoảng cách giữa hai đường thẳng BB' và AC'.

Xem đáp án » 12/07/2024 17,177

Câu 3:

Cho hình lập phương ABCD.A'B'C'D'

a) Chứng minh rằng B'D vuông góc với mặt phẳng (BA'C')

b) Tính khoảng cách giữa hai mặt phẳng (BA'C') và (ACD')

c) Tính khoảng cách giữa hai đường thẳng BC' và CD'

Xem đáp án » 12/07/2024 8,881

Câu 4:

Cho tứ diện ABCD cạnh a. Tính khoảng cách giữa hai cạnh đối diện của tứ diện đều đó.

Xem đáp án » 12/07/2024 5,350

Câu 5:

Cho hình lập phương ABCD.A'B'C'D' cạnh a. Chứng minh rằng các khoảng cách từ các điểm B, C, D, A', B' và D' đến đường chéo AC' đều bằng nhau. Tính khoảng cách đó.

Xem đáp án » 12/07/2024 4,805

Câu 6:

Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh AB và CD của tứ diện ABCD là đường vuông góc chung của AB và CD thì AC = BD và AD = BC.

Xem đáp án » 12/07/2024 4,543

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn