Câu hỏi:
13/07/2024 1,706Chứng tỏ rằng lấy một số có hai chữ số, cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11 ( chẳng hạn 37 + 73 = 110, chia hết cho 11)
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gọi số tự nhiên có hai chữ số là ab(a ≠0)
Số viết theo thứ tự ngược lại của ab là ba
Ta có: ab = 10a + b ; ba = 10b + a
Do đó: ab+ ba= (10a + b) + (10b + a) = 11a + 11b = 11.(a + b)
Vì 11.(a + b) ⋮ 11 nên ab + ba luôn chia hết cho 11
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chứng tỏ rằng: Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.
Câu 2:
Chứng tỏ rằng: Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.
Câu 3:
Cho tổng A = 12 + 15 + 21 + x, với x ∈ N. Tìm điều kiện của x để A chia hết cho 3, để A không chia hết cho 3.
Câu 4:
Khi chia số tự nhiên a cho 24, ta được số dư là 10. Hỏi số a có chia hết cho 2 không? Có chia hết cho 4 không?
Câu 5:
Chứng tỏ rằng: Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
Câu 6:
Chứng tỏ rằng số có dạng (abcabc) bao giờ cũng chia hết cho 11 ( chẳng hạn 328328 ⋮11)
Câu 7:
Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37.
về câu hỏi!