Câu hỏi:

13/07/2024 1,883

Chứng tỏ rằng lấy một số có hai chữ số, cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11 ( chẳng hạn 37 + 73 = 110, chia hết cho 11)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số tự nhiên có hai chữ số là ab(a ≠0)

Số viết theo thứ tự ngược lại của ab là ba

Ta có: ab = 10a + b ; ba = 10b + a

Do đó: abba= (10a + b) + (10b + a) = 11a + 11b = 11.(a + b)

Vì 11.(a + b) ⋮ 11 nên ab + ba luôn chia hết cho 11

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng tỏ rằng: Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.

Xem đáp án » 13/07/2024 14,726

Câu 2:

Chứng tỏ rằng: Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.

Xem đáp án » 13/07/2024 11,095

Câu 3:

Cho tổng A = 12 + 15 + 21 + x, với x ∈ N. Tìm điều kiện của x để A chia hết cho 3, để A không chia hết cho 3.

Xem đáp án » 13/07/2024 8,719

Câu 4:

Khi chia số tự nhiên a cho 24, ta được số dư là 10. Hỏi số a có chia hết cho 2 không? Có chia hết cho 4 không?

Xem đáp án » 13/07/2024 8,139

Câu 5:

Chứng tỏ rằng: Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3

Xem đáp án » 13/07/2024 7,980

Câu 6:

Chứng tỏ rằng số có dạng (abcabc) bao giờ cũng chia hết cho 11 ( chẳng hạn 328328 ⋮11)

Xem đáp án » 13/07/2024 5,452

Câu 7:

Chứng tỏ rằng: Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4

Xem đáp án » 13/07/2024 4,899