Câu hỏi:

11/07/2024 13,131

Hai bạn Tùng và Hải thường đến thư viện đọc sách. Tùng cứ 8 ngày đến thư viện 1 lần, Hải 10 ngày 1 lần. Lần đầu cả hai bạn cùng đến thư viện vào một ngày. Hỏi sau ít nhất bao nhiêu ngày thì hai bạn cùng đến thư viện?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi sau ít nhất m ngày thì hai bạn cùng đến thư viện (m ∈ N*).

Vì số ngày ít nhất nên m là BCNN của 8 và 10

Ta có: 8 = 23 và 10 = 2.5

BCNN(8,10) = 23.5 = 40

Vậy sau 40 ngày thì hai bạn cùng nhau đến thư viện.

Bình luận


Bình luận

Inuyasha
20:44 - 09/01/2025

Hai bạn Tùng và Sơn thường đến thư viện đọc sách. Tùng cứ 8 ngày lại đến một lần. Hải cứ10 ngày lại đến một lần. Lần đầu hai bạn đến thư viện đọc vào một ngày. Hỏi sau ít nhất bảo nhiêu ngày thì hai bạn lại cùng nhau đến thư viện

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi m (m ∈ N*) là số sách cần tìm.

Vì xếp thành từng bó 10, 12,15 và 18 cuốn đều vừa đủ bó nên số sách m là BC(10;12;15;18)

Ta có: 10 = 2.5

12 = 22.3

15 = 3.5

18 = 2.32

BCNN(10,12,15,18) = 22.32.5 = 180

BC(10,12,15,18) = {0;180;360;540;..}

Vì số sách nằm trong khoảng 200 đến 500 nên m = 360

Vậy có 360 cuốn sách

Lời giải

Gọi m là số học sinh cần tìm của khối ( m N* và m < 300)

Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 thiếu 1 người nên:

(m + 1) 2; (m + 1) 3; (m + 1) 4; (m + 1) 5; (m + 1) 6

Suy ra: (m + 1) BC(2; 3; 4; 5; 6) và m + 1 < 301 (vì m < 300)

Ta có 2 = 2; 3 = 3; 4 = 22; 5 = 5 và 6 = 2.3

BCNN(2; 3; 4; 5; 6) = 22 . 3 . 5 = 60

BC(2; 3; 4; 5; 6) = {0; 60; 120; 180; 240; 300; ...}

Vì m + 1 < 301 nên m + 1 {60; 120; 180; 240; 300}

Suy ra m {59; 119; 179; 239; 299} (1)

Do khi xếp hàng 7 thì vừa đủ nên m 7 (2)

Từ (1) và (2) suy ra: m = 119

Vậy khối có 119 học sinh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tìm BCNN của: 9, 10 và 11

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay