Câu hỏi:

13/07/2024 5,489

Tam giác ABC có ∠B = 110o, ∠C = 30o. Gọi Ax là tia đối của tia AC. Tia phân giác của góc BAx cắt đường thẳng BC tại K. Chứng minh rằng tam giác KAB có hai góc bằng nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 7 | Giải sbt Toán 7

+) Hai góc ∠ABK và ∠ABC là hai góc kề bù nên:

∠ABK = 180° - ∠ABC = 180° - 110° = 70° (1)

+) Góc Bax là góc ngoài tam giác tại đỉnh A của tam giác ACK nên:

∠BAx = 110° + 30° = 140° ( tính chất góc ngoài tam giác).

+) Do AK là tia phân giác của góc BAx nên:

∠BAK = ∠BAx : 2 = 140° : 2 = 70°. (2)

Từ (1) và (2) suy ra tam giác KAB có hai góc bằng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔABC ta có:

∠A + ∠B + ∠C = 180o(tổng ba góc trong tam giác)

⇒∠B = 180o - (∠A +∠C )

⇒x = 180o - (60o + 50o) = 70o

(∠B1) =(∠B2 ) = (1/2 )∠B (vì BD là tia phân giác)

⇒ ∠B1 = ∠B2 = 70o : 2 = 35o

Trong ΔBCD ta có ∠(ADB) là góc ngoài tại đỉnh D

⇒ ∠(ADB) = ∠(B1 ) + ∠C (tính chất góc ngoài tam giác)

Nên ∠(ADB) = 35º + 50º = 85º

+) Do ∠(ADB) + ∠(BDC) = 180o(hai góc kề bù)

⇒∠(BDC) = 180o-∠(ADB) = 180o - 85o = 95o

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Có thể tìm góc B bằng hai cách:

Cách 1

Ta có: ∠(A1 ) + ∠(A2 ) = ∠(BAC) = 90o(1)

Vì ΔAHB vuông tại H nên:

∠B + ∠(A1) = 90o(tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra ∠B = ∠(A2 )

Cách 2

Vì ΔABC vuông tại A nên:

∠B +∠C = 90o (theo tính chất tam giác vuông) (1)

Vì ΔAHC vuông tại H nên:

∠(A2 ) + ∠C = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B = ∠(A2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay